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Abstract

This project explores the fascinating possibility of generating music from brain activity

recorded during functional magnetic resonance imaging (fMRI) scans, bridging the gap

between neuroscience, artificial intelligence, and music composition. Our innovative ap-

proach employs the Map method to learn a mapping between the fMRI response tensor

and the prior embedding space of a conditional music generation model, MusicGen. By

experimenting with different modality encoders, including EnCodec, Chromagram Tok-

enizer, and T5, and temporal alignment techniques, such as sliding window averaging,

skipped timesteps, and total averaging, we demonstrate the feasibility of reconstructing

music from brain scans. The text-based T5 encoder emerges as the most effective modality,

while the total averaging technique proves to be the most successful in aligning the fMRI

response tensor with the prior embedding space. We identify the top-performing regions

of interest (ROIs) in the brain for music generation, primarily located in the temporal lobe

and associated with auditory processing, language comprehension, and multimodal inte-

gration. The evaluation of the generated music samples using objective metrics, such as

Fréchet Audio Distance (FAD), Kullback-Leibler Divergence (KL), and Mel Cepstral Dis-

tortion (MCD), showcases the challenges and limitations of the current approach, but also

highlights the potential for future advancements. This research contributes to a deeper

understanding of the human brain and its relationship with the arts, inspiring new forms

of musical creation and fostering collaborations between neuroscientists, musicians, and AI

researchers. As we continue to explore the intersection of the mind, music, and machine,

we move closer to a future where the boundaries between these domains dissolve, giving

rise to new forms of creative expression and artistic exploration.

Keywords: Music generation, brain scans, fMRI, artificial intelligence, neuroscience,

MusicGen, Map method, auditory processing, language comprehension, multimodal inte-

gration,
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Chapter 1

Introduction

Music is a universal language that transcends cultural boundaries, serving as a powerful

medium for expression and communication. The neural representations of music in the

human brain have been a topic of great interest in the field of neuroscience. Numer-

ous studies have investigated brain activity using functional magnetic resonance imaging

(fMRI) while participants listened to music, revealing the representation of various mu-

sical features such as rhythms [13], timbres [14, 15], emotions [16], and musical genres

[17, 18]. These findings provide valuable insights into the complex nature of human music

perception and experience.

Recent advancements in text-to-music models have enabled the conditional generation of

high-quality music [19, 20, 21, 22, 23]. This development has opened up new possibilities

for bridging the gap between our linguistic understanding of music and the creation of

musical compositions. However, the relationship between the text and music embeddings

used in these generative models and the neural representations of music in the human brain

remains largely unexplored. Furthermore, the potential for generating music directly from

brain activity has yet to be fully investigated.

Decoding brain signals to understand perception is crucial for unraveling the intricate

mechanisms of human perception [24, 25]. The correlation between external stimuli

and neural responses provides valuable insights into the underlying perceptual processes

[26, 27, 28]. Perception involves not only the passive reception of sensory inputs but

also complex cognitive processes that shape subjective experiences. Therefore, decoding

brain signals back into corresponding perceptual modalities, such as vision, audio, and

descriptive semantic text, holds significant implications for understanding the neural basis

of perception. Moreover, brain perception decoding contributes to the development of

1



Chapter 1. Introduction 2

practical Brain-Computer Interface (BCI) systems, which have the potential to enhance

communication between the brain and external devices, with applications in neuropros-

thetics [29, 30], virtual/augmented reality [31, 32], and assistive technologies [33, 34].

Neuroimaging techniques, such as fMRI, Electroencephalography (EEG), and Magnetoen-

cephalography (MEG), provide a window into the neural activity associated with percep-

tual experiences [35, 36, 37]. Each technique offers unique advantages in terms of spatial

and temporal resolution, allowing for a comprehensive understanding of brain function.

Neuroimaging data serves as the foundation for brain decoding, enabling the exploration

of the functionalities and interrelations of various brain regions and shedding light on the

mechanisms underlying perception and comprehension [38, 39].

Recent studies have revealed correspondences between the internal representations of deep

learning models and those of the brain across various sensory and cognitive modalities

[40, 41]. These findings have advanced our understanding of brain functions through

the development of encoding models [42], interpretations of representations based on their

correspondence with brain functions [43, 44], and the reconstruction of experienced content

from brain activity [45, 46, 47]. In the context of auditory brain functions, researchers have

developed encoding models using deep learning models that process auditory inputs [41]

and have conducted studies to reconstruct perceived sounds from brain activity [48, 49].

Building upon the foundational work in the field, we have developed a novel approach to

reconstruct music from fMRI recordings of subjects listening to music. Our methodology

utilizes the music genre neuroimaging dataset from Nakai et al. (2022) [50], which provides

fMRI scans along with corresponding music stimuli. We employ advanced techniques, such

as linear regression and ensemble modeling, to predict music embeddings from voxel data,

considering various temporal alignment strategies to address the challenges posed by the

different temporal resolutions of fMRI scans and music embeddings. A key aspect of our

work is the exploration of different modality encoders, including EnCodec for audio wave-

forms, Chromagram Tokenizer for melodic representations, and T5 for textual descriptions

of music. By comparing the performance of these encoders in predicting music embed-

dings from brain activity, we provide valuable insights into the most effective modalities

for capturing the neural representations of music.

Our research also delves into the identification of the top-performing regions of interest

(ROIs) in the brain for music generation. Through rigorous analysis, we have discovered

that the temporal lobe and its associated regions, such as the superior temporal gyrus and

the inferior temporal gyrus, play a crucial role in music perception and generation. These
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findings contribute to a deeper understanding of the neural mechanisms underlying music

processing and shed light on the complex interplay between different brain regions in the

experience of music.

To evaluate the quality of the generated music, we employ objective metrics such as Fréchet

Audio Distance (FAD), Kullback-Leibler Divergence (KL), and Mel Cepstral Distortion

(MCD). Our results demonstrate the effectiveness of our approach, with the text-based

T5 encoder and the total averaging technique achieving the best performance among the

evaluated methods. While there is still room for improvement in terms of the fidelity of

the generated music compared to the ground truth, our work represents a significant step

forward in the field of brain-based music generation.



Chapter 2

Related Work

2.1 Music Generation

The representation of audio signals is a crucial component in generative models for mu-

sic. The prominent approach is to represent music signals in a compressed representation,

either discrete or continuous, and apply a generative model on top of it. Lakhotia et al.

[51] proposed quantizing speech representations using k-means to construct speech lan-

guage models. Recently, EnCodec[5] and Soundstream [52] proposed applying a VQ-VAE

directly on the raw waveform using residual vector quantization. Such discrete representa-

tions have been used for various audio generation tasks, including text-to-audio generation.

Music generation has been a long-standing area of research, with various approaches ex-

plored. MuseGAN[53] proposed a GAN-based approach for symbolic music generation,

while Bassan et al.[54] introduced an unsupervised segmentation method for symbolic mu-

sic, which can be used for generation. Ycart et al.[55] modeled polyphonic music using

recurrent neural networks, and Ji et al.[56] conducted a comprehensive survey on deep

learning methods for music generation. Autoregressive models have been widely used for

music generation. Jukebox[57] proposed representing music samples in multiple streams

of discrete representations using a hierarchical VQ-VAE, and applied sparse transformers

over the sequences to generate music. While Jukebox generates music with high temporal

coherence, it contains perceptible artifacts. Gan et al.[58] focused on generating music for a

given video, predicting MIDI notes. More recently, Agostinelli et al.[59] represented music

using ”semantic tokens” and ”acoustic tokens”, and employed a cascade of transformer de-

coders conditioned on a textual-music joint representation, Mulan[60]. Donahue et al.[61]

followed a similar modeling approach for singing-to-accompaniment generation. Diffusion

4
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models have emerged as an alternative approach for music generation. [62, 63, 64, 65]

proposed using latent diffusion models for the task of text-to-music generation. Schnei-

der et al.[62] used diffusion models for both audio encoder-decoder and latent generation,

while Huang et al.[63] proposed a cascade of diffusion models to generate audio and grad-

ually increase its sampling rate. Forsgren and Martiros[65] fine-tuned Stable Diffusion

Rombach et al.[66] using spectrograms to generate five-second segments, then employed

image-to-image mapping and latent interpolation to generate longer sequences. In the

broader domain of audio generation, several studies have focused on text-to-audio gen-

eration for environmental sounds. Yang et al.[67] represented audio spectrograms using

a VQ-VAE, then applied a discrete diffusion model conditioned on textual CLIP embed-

dings Radford et al.[68] for generation. Kreuk et al.[69] proposed applying a transformer

language model over discrete audio representations obtained by quantizing time-domain

signals using EnCodec[70]. Sheffer and Adi[71] followed a similar approach to Audiogen[69]

for image-to-audio generation. Make-an-audio[72] and Audioldm[73] proposed using latent

diffusion models for text-to-audio generation, extending it to various tasks such as inpaint-

ing and image-to-audio conversion.

2.2 Neural Decoding

Recent advancements in neuroimaging technologies, such as functional Magnetic Res-

onance Imaging (fMRI), Electroencephalography (EEG), and Magnetoencephalography

(MEG), have opened up exciting possibilities in the field of neural decoding [35, 36, 37].

By analyzing patterns of brain activity, researchers aim to reconstruct the original stim-

uli that elicited those patterns, shedding light on how the brain processes and represents

information [38, 39]. This section explores the current landscape of neural decoding, with

a particular focus on reconstructing visual and auditory stimuli from brain scans.

2.2.1 Visual Decoding

The human visual cortex is a complex network of regions responsible for processing visual

information [74, 75]. Several studies have investigated the decoding of visual stimuli from

fMRI data, leveraging datasets such as the Natural Scenes Dataset (NSD) [76], Generic

Object Decoding (GOD) dataset [77], and Deep Image Reconstruction (DIR) dataset [78].

These datasets contain fMRI scans of subjects viewing a variety of natural images, enabling

the exploration of both early and higher visual cortex regions.
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Researchers have employed various generative models to reconstruct images from brain

activity. For instance, BrainSD [79] and BrainDiffuser [80] utilize diffusion models con-

ditioned on fMRI data to generate realistic images. GANs have also been popular, with

models like BrainSSG [81] and BrainDVG [82] leveraging adversarial training to improve

the quality of reconstructed images. Additionally, autoencoder-based approaches, such as

SSNIR [83] and SSNIR-SC [84], have demonstrated promising results in capturing low-level

visual details.

EEG-based visual decoding has also gained attention, with datasets like EEG-VOA [85]

enabling the study of object recognition from EEG signals. Models such as DreamDiffusion

[86] and NeuroImagen [87] have pushed the boundaries of EEG-based image reconstruction,

generating remarkably detailed and semantically coherent images.

2.2.2 Auditory Decoding

Decoding auditory stimuli from brain activity is an exciting frontier in neural decoding.

The Brain Sound Reconstruction (BSR) dataset [88] and Narratives dataset [89] provide

valuable resources for studying the reconstruction of sound and speech from fMRI data.

BSR [88] utilizes an autoregressive approach to generate audio signals based on brain ac-

tivity patterns, while works like UniCoRN [90] focus on reconstructing textual descriptions

of spoken stories.

EEG-based auditory decoding has also shown promise, with datasets like ETCAS [91]

enabling the study of continuous speech reconstruction from EEG signals. The ETCAS

model [91] employs a GAN-based approach to directly map EEG signals to speech wave-

forms, showcasing the potential for real-time speech decoding.

2.2.3 Multimodal Decoding

The human brain processes information from multiple sensory modalities, and recent work

has explored the simultaneous decoding of different stimuli types. The Continous Language

Semantic Reconstruction (CLSR) dataset [92] contains fMRI data of subjects viewing silent

video clips and listening to spoken stories, allowing for the investigation of multimodal

decoding. The CLSR model [92] demonstrates the ability to generate textual descriptions

from both video and speech-evoked brain activity. Another exciting avenue is the decoding

of music from brain scans. Datasets like MusicGenre [93] and MusicAffect [94] provide

fMRI and EEG data of subjects listening to various musical stimuli. Models such as
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Brain2Music [95] and NDMusic [96] have shown promising results in reconstructing music

from brain activity, opening up possibilities for brain-computer interfaces in the musical

domain.



Chapter 3

Theoretical Background

3.1 Audio Data Representation

The advent of deep learning algorithms has prompted many researchers to explore alter-

natives to traditional signal processing methods for sound generation. While deep learning

models have demonstrated remarkable capabilities in expressive voice synthesis, realistic

sound texture generation, and virtual instrument note synthesis, the quest for the most

suitable deep learning architecture remains an active area of investigation. The choice of

architecture is intricately tied to the representation of audio data. Raw audio waveforms,

with their intrinsic density and richness, can pose challenges for deep learning models in

terms of computational efficiency and training time. Moreover, the waveform representa-

tion may not align with the perceptual aspects of sound. Consequently, researchers have

explored transforming raw audio into compressed and more

3.1.1 Raw Audio Waveform Representation and Quantization

The term ”raw audio” commonly refers to the waveform representation encoded using pulse

code modulation (PCM), which involves sampling the continuous waveform in both time

and amplitude domains. This process results in a sequence of numbers, each representing

an amplitude value at a chosen sampling frequency. To ensure faithful reproduction,

the highest frequency component must adhere to the Nyquist-Shannon sampling theorem

[97], stating that frequencies below half the sampling rate can be accurately reconstructed.

Typical audio applications employ a 44.1 kHz sampling frequency, with quantization levels

ranging from 8 bits (256 levels) to 24 bits (16.8 million levels). Consequently, a one-second

8
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Figure 3.1: Sounds visualized as a waveform, which plots the sample values over time
and illustrates the changes in the sound’s amplitude. This is also known as the time

domain representation of sound.

audio segment sampled at 44.1 kHz generates 44,100 samples, rendering this representation

highly informative for deep learning models.

However, preprocessing techniques can enhance the effectiveness of deep learning models

by reducing the quantization range. Several research approaches [98] [99] [100] employ

non-linear quantization processes like -law companding, described by the equation:

f(x) = sgn(x)
ln(1 + µ|x|)
ln(1 + µ)

, −1 < x < 1 (3.1)

where µ represents the number of levels created after transformation. Despite the atten-

tion garnered by non-linear quantization methods, the predominant approach in existing

literature [101] involves using a normalized high-resolution signal as input to deep learning

models.

Alternatively, some applications adopt linear quantization of the input waveform [102]

[103], maintaining a uniform quantization step size across the amplitude range. Fur-

thermore, researchers have explored quantization designs that treat the most and least

significant bits differently [104], potentially enhancing the representation of relevant signal

characteristics.
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3.1.2 Quantization and Preprocessing Considerations

The choice of quantization technique and preprocessing steps applied to the raw audio

waveform can significantly impact the performance and effectiveness of deep learning mod-

els for audio generation tasks. Factors influencing this choice include the specific audio

task, the deep learning architecture employed, and the trade-offs between computational

complexity, reconstruction quality, and perceptual aspects of the generated audio.

3.1.3 Spectrogram Representations

Spectrograms provide a time-frequency visual representation of sound, enabling the analy-

sis of spectral content evolution over time. They are typically obtained through the Short-

Time Fourier Transform (STFT), which applies the Discrete Fourier Transform (DFT) to

overlapping segments of the waveform, as described by the equation:

X(k) =
N−1∑
n=0

x(n)e−jωkn, k = 0, 1, . . . , N − 1 (3.2)

where N is the number of samples, and k is the segment index. The spectrogram employs

only the absolute values of the STFT, discarding the phase information. This representa-

tion has been widely adopted in various audio-related research works[105] [106] [107].

In addition to the conventional spectrogram, deep learning architectures have explored

non-linear variants, such as mel-spectrograms [108] [109][110][111][112][113][114] and

Constant-Q Transformations (CQT) [115]. The mel-spectrogram is generated by applying

perceptual mel-filter bands to the DFT, with the most common encoding formula given

by:

mel = 2595 log10(1 + f/700) (3.3)

where f is the frequency in Hertz. Alternatively, some models capture the perceptual

transformation by applying a linear scaling up to 1 kHz and a logarithmic scaling above

this threshold.

The CQT is another time-frequency representation with geometrically spaced frequen-

cies, where the center frequencies of the filters are calculated as ωk = 2k/bω0, with
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Figure 3.2: Mel spectrogram is a variation of the spectrogram that is commonly used
in speech processing and machine learning tasks.

k = 1, 2, . . . , kmax and b as a constant. The bandwidth of each frequency is given by

δk = ωk(2
1/b − 1)−1, and the frequency resolution is determined by the quality factor Q

Q = ωk/δk = (21/b − 1)−1 (3.4)

While the CQT offers different frequency resolutions for low and high frequencies, it dis-

cards the phase information and is often irreversible.

To address this limitation, researchers have explored invertible CQT variants based on

nonstationary Gabor frames [116] and rainbowgrams [117], which encode time derivatives

of the phase using colors.

Furthermore, more complex spectrogram-based representations have been investigated,

such as scaled logarithmic amplitude and phase of the STFT, increased resolution spectro-

grams, mel-filtered spectrograms, and Instantaneous Frequency-based spectrograms [118].

Comparative studies between raw audio and spectrogram representations have also been

conducted to uncover the most suitable representation for specific deep learning models

[119] [120].

3.1.4 Acoustic Feature Representations

To overcome the wealth of acoustic information present in raw audio waveforms, various

studies have explored the extraction of perceptual features from the original signal. These

acoustic feature representations aim to capture salient characteristics in a more compact
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and interpretable form. Some approaches employ phoneme inputs [121], fundamental fre-

quency and spectral features [122], or a combination of multiple attributes such as velocity,

instrument, pitch, and time information [123]. Other implementations leverage cepstral co-

efficients [124] [125] or a variety of linguistic and acoustic features [126] [100]. Additionally,

widely recommended parameter sets derived from the WORLD vocoder [127][128][129], a

prominent analysis and synthesis tool for speech and audio signals, have been utilized.

The adoption of acoustic feature representations offers several advantages over raw wave-

form data, including reduced dimensionality, enhanced interpretability, and potential align-

ment with perceptual qualities of sound. However, the specific choice of feature set depends

on factors such as the target audio application, the availability of prior domain knowledge,

and the trade-offs between computational complexity, reconstruction quality, and the de-

sired level of abstraction.

3.1.5 Embedding Representations

Inspired by their success in Natural Language Processing (NLP), embedding represen-

tations have been adopted in sound processing to encode audio signals into real-valued

vectors. This approach leverages the property of similar embeddings being clustered in

the vector space, enabling the encoding of analogous audio characteristics. Embeddings

have been employed for various purposes, including:

• Reducing the dimensionality of audio signals [130] [109]

• Enhancing timbre synthesis [131]

• Generating interpretable representations [132][133] for effective parameter extraction

in synthesizers

Certain architectures, such as autoencoders [117] and multi-resolution encoders [57], uti-

lize embeddings as latent representations to condition deep learning models for audio

generation tasks.

3.1.6 Symbolic Representations

In music processing, symbolic representations refer to the use of formats such as Musical

Instrument Digital Interface (MIDI) and piano rolls. MIDI is a technical standard that
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specifies a protocol, a digital interface, and a communication link for the simultaneous

operation of multiple electronic musical instruments. A MIDI file encodes the notes being

played at each time step, including information about the instrument, pitch, and velocity.

Prominent implementations like MidiNet [134] leverage MIDI data for music generation

tasks.

Piano rolls offer a more dense representation of musical information compared to MIDI. A

piece of music is represented as a binary N ×T matrix, where N is the number of playable

notes, and T is the number of time steps. Generative Adversarial Networks (GANs)

have been applied to music generation using multiple-track piano-roll representations [53].

Certain approaches, such as DeepJ [135], scale the representation matrix between 0 and 1

to capture note dynamics.

However, a notable limitation of symbolic representations is their inability to differentiate

between holding a note and replaying a note, as both are represented identically. To

address this issue, DeepJ introduced a secondary ”replay” matrix alongside the original

”play” matrix.

The choice between embedding, symbolic, or other representations depends on factors such

as the desired level of abstraction, computational complexity, interpretability, and fidelity

to the original audio signal.

3.1.7 Chromagram Representation

The chromagram is a representation aimed at increasing the robustness of the log-frequency

spectrogram to variations in timbre and instrumentation. The main idea is to combine

pitch bands corresponding to pitches that differ by one or several octaves, leveraging the

human perception of pitch periodicity. A pitch can be separated into two components:

tone height, referring to the octave number, and chroma, representing the pitch spelling

attribute contained in the set {C,C♯, D,D♯, . . . , B}.

Enumerating the chroma values from 0 to 11, where 0 refers to C, 1 to C♯, and so on, a pitch

class is defined as the set of all pitches that share the same chroma. The chroma features

aggregate all spectral information related to a given pitch class into a single coefficient.

Given a pitch-based log-frequency spectrogram γLF : Z× [0 : 127]→ R≥0, a chromagram

Z× [0 : 11]→ R≥0 can be derived by summing up all pitch coefficients that belong to the

same chroma:
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Figure 3.3: Example of chromagram from a piece of music.[1]

C(n, c) :=
∑

p∈[0:127]
p mod 12=c

γLF (n, p), c ∈ [0 : 11] (3.5)

The cyclic nature of chroma features becomes evident when visualizing the chromagram

of a chromatic scale, where the increasing notes are ”wrapped around” the chroma axis.

However, due to the presence of higher harmonics, the energy is typically spread across

various chroma bands even when playing a single note, as harmonics contribute to other

chroma bands.

The chromagram representation leverages the human perception of pitch periodicity and

octave equivalence, providing a more robust representation against variations in timbre

and instrumentation compared to the log-frequency spectrogram.

3.2 Machine Learning

3.2.1 Linear Regression

Linear regression is a fundamental statistical and machine learning model employed for

predicting a continuous target variable based on one or more input features. It assumes
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a linear relationship between the input variables and the output variable, making it a

powerful yet interpretable model for various regression tasks.

3.2.1.1 Linear Regression and Regularization

Linear regression is a widely used algorithm for predicting numeric values based on a lin-

ear combination of input variables. The hypothesis for linear regression can be represented

as:

hθ(x) = θ0 + θ1x1 + θ2x2 + . . .+ θnxn

where hθ(x) is the predicted output, xi are the input variables, and θi are the model

coefficients. The coefficients θi are typically learned by minimizing the residual sum of

squares (RSS):

RSS(θ) =

m∑
i=1

(y(i) − hθ(x
(i)))2

where m is the number of training examples, y(i) is the true output, and x(i) is the

input vector for the ith training example. Overfitting occurs when the model becomes

too complex and captures the noise in the training data, resulting in poor generalization

to new, unseen data. One way to mitigate overfitting is through regularization, which

involves adding a penalty term to the optimization objective to discourage complex models.

There are two common types of regularization techniques: Lasso Regularization (L1)

and Ridge Regularization (L2)

3.2.1.2 Linear Regression with L2 Regularization (Ridge Regression)

Ridge regression, or L2 regularization, is particularly useful when dealing with multi-

collinearity, which occurs when two or more predictors have a near-linear relationship.

In such cases, the ordinary least squares (OLS) estimator may return erroneously high-

value coefficients, leading to overfitting and unstable models. To address this issue, ridge

regression introduces an L2 penalty term, also known as the ridge penalty, to the RSS

function:

Ridge Penalty = α

n∑
j=1

θ2j

The ridge regression estimator minimizes the RSS function with the added ridge

penalty:

minimize
θ

; RSS(θ) + α
n∑

j=1

θ2j
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By adding the ridge penalty, the model coefficients are shrunk towards zero, but not all

coefficients are shrunk by the same value. Instead, coefficients are shrunk in proportion

to their initial size. As the regularization parameter α increases, high-value coefficients

shrink at a greater rate than low-value coefficients. This process is known as coefficient

shrinkage.

3.2.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm that have

proven to be highly effective in tasks such as image classification and object detection.

CNNs are designed to extract increasingly abstract features from input data through a

series of layers. The basic building blocks of a CNN are convolutional layers and pooling

layers, followed by fully connected layers for classification or regression.

The feature learning process in CNNs involves two main components: convolutional layers

and pooling layers.

3.2.2.1 Convolutional Layer

The convolutional layer is used for feature extraction. It applies a convolution opera-

tion followed by an activation function to the input data. Let I be the input tensor of

dimensions m1 × m2 × mc, where m1 and m2 represent the spatial dimensions, and mc

represents the number of channels. A kernel or filter K of dimensions n1×n2×nc (where

nc is the same as mc) is convolved with the input tensor I. The filter moves over the

input tensor from left to right, and the dot product between the filter and the correspond-

ing input region is computed and summed up. The stride s determines the step size by

which the filter moves over the input tensor. The resulting feature map has dimensions

(m1 − n1 + 1)× (m2 − n2 + 1)× 1.

F[i, j] = (I ∗K)[i,j] (3.6)

The (i, j)-th entry of the feature map is given by:

f[i,j] =

m1∑
x

m2∑
y

mc∑
z

Kx,y,z · Ii+x−1,j+y−1,z (3.7)
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Zero padding is often used to ensure that the filter can be applied to the corners of the

input tensor, preventing information loss. In general , one bias term ‘b’ has been added

to the convoluted part and then the activation function is applied.

Conv(I,K) = ϕa(c) = ϕa(I ∗K + b) (3.8)

where ϕa is an activation function.

(3.9)

There are different types of activation functions as sigmoid, tangent, hyperbolic tangent

function. The most commonly used activation function is ReLU which eliminates the

negative values: such as the Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x) (3.10)

3.2.2.2 Pooling Layer

The pooling layer is used to reduce the spatial dimensions of the feature maps, effectively

down-sampling the output of the convolutional layers. Common pooling operations include

max pooling, average pooling, and sum pooling.

Conv(I,K) = c

P = ϕp(c) (3.11)

where ϕp is a pooling function.

(3.12)

3.2.2.3 Classification

After passing through multiple convolutional and pooling layers, the output is flattened

into a single vector, which serves as the input to the fully connected layers.

3.2.2.4 Fully Connected Layer

The fully connected layer receives the flattened vector and performs classification or re-

gression on the extracted features. The output of the fully connected layer is calculated
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as:

X =
∑
i

wiPi + b′ (3.13)

z = g(X) (3.14)

where g is the activation function of the fully connected layer.

Multiple fully connected layers can be stacked, with the output of one layer serving as the

input to the next layer.

3.2.3 Transformers

Transformers, introduced by Vaswani et al [2] are a type of neural network architecture that

has been widely adopted in various natural language processing (NLP) tasks, and more

recently, in music generation tasks. The key innovation of Transformers lies in their reliance

on self-attention mechanisms, which allow the model to capture long-range dependencies

within the input data more effectively than traditional recurrent neural networks (RNNs)

or convolutional neural networks (CNNs).

3.2.3.1 Position Embeddings:

Position embeddings play a crucial role in Transformer architectures, addressing a limi-

tation inherent in self-attention mechanisms: the lack of inherent sequential information.

Unlike recurrent neural networks (RNNs) or convolutional neural networks (CNNs), Trans-

formers do not inherently understand the sequential order of the input tokens, as they

process the entire sequence in parallel. To capture the sequential order, position embed-

dings are introduced. The position embeddings are added to the input token embeddings

to create enriched representations that encode both the token identity and its position.

3.2.3.2 Multi-Head Self Attention Mechanism:

The self-attention mechanism computes a weighted sum of input representations, where the

weights are determined by the compatibility scores (attention weights) between different

positions in the input sequence. The multi-head attention allows the model to attend to

different positions in parallel.
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Figure 3.4: The Transformer - model architecture. [2]

The self-attention function is defined as follows for a single head:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V (3.15)

where Q, K, and V are the query, key, and value matrices, and dk is the dimension of key

vectors. For multiple heads, the outputs are concatenated and linearly transformed.

MultiHead(Q,K, V ) = Concat(Attention1(Q,K, V ), . . . ,Attentionh(Q,K, V ))WO (3.16)

3.2.3.3 Encoder

The encoder in the Transformer architecture is composed of a stack of N = 6 identical

layers. Each layer consists of two sub-layers: a multi-head self-attention mechanism and

a position-wise fully connected feed-forward network. Residual connections [136] are em-

ployed around each sub-layer, followed by layer normalization [137]. The output of each

sub-layer is given by:
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Figure 3.5: The transformer consists of a series of operations. Multi-head attention
block and a LayerNorm operation is applied. A second residual layer where the same
fully connected neural network is applied separately to each of the N representations.

Finally, LayerNorm is applied again. [3]

Output = LayerNorm(x+ Sublayer(x)) (3.17)

where x is the input to the sub-layer and Sublayer(x) is the function implemented by

the sub-layer itself. All sub-layers, as well as the embedding layers, produce outputs of

dimension dmodel = 512.

3.2.3.4 Decoder

The decoder is also composed of a stack of N = 6 identical layers. In addition to the two

sub-layers present in the encoder (multi-head self-attention and position-wise feed-forward

network), the decoder introduces a third sub-layer that performs multi-head attention over

the output of the encoder stack. Similar to the encoder, residual connections and layer

normalization are applied after each sub-layer.

To maintain the auto-regressive property, the self-attention sub-layer in the decoder is

modified to prevent positions from attending to subsequent positions. This masking,

combined with the fact that the output embeddings are offset by one position, ensures

that the predictions for position i can depend only on the known outputs at positions less

than i.

3.2.4 T5 Model

The T5 model [4] is an encoder-decoder Transformer implementation that closely follows

the originally proposed form by [2]. The input sequence of tokens is first mapped to a
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sequence of embeddings, which is then passed into the encoder. The encoder consists of

a stack of blocks, each comprising a self-attention layer followed by a small feed-forward

network. Layer normalization [137] is applied to the input of each subcomponent, using a

simplified version where the activations are only rescaled without an additive bias. After

layer normalization, a residual skip connection [136] adds each subcomponent’s input to its

output. Dropout [138] is applied within the feed-forward network, on the skip connection,

on the attention weights, and at the input and output of the entire stack.

The decoder is similar in structure to the encoder, but includes a standard attention

mechanism after each self-attention layer that attends to the output of the encoder. The

self-attention mechanism in the decoder also uses a form of autoregressive or causal self-

attention, which only allows the model to attend to past outputs. The output of the

final decoder block is fed into a dense layer with a softmax output, whose weights are

shared with the input embedding matrix. All attention mechanisms in the Transformer

are split up into independent ”heads” whose outputs are concatenated before being further

processed.

Since self-attention is order-independent (i.e., an operation on sets), it is common to

provide an explicit position signal to the Transformer. While the original Transformer used

a sinusoidal position signal or learned position embeddings, the T5 model uses relative

position embeddings [139][140]. Instead of using a fixed embedding for each position,

relative position embeddings produce a different learned embedding according to the offset

between the ”key” and ”query” being compared in the self-attention mechanism. The T5

model uses a simplified form of position embeddings where each ”embedding” is simply

a scalar added to the corresponding logit used for computing the attention weights. For

efficiency, the position embedding parameters are shared across all layers, though within

a given layer, each attention head uses a different learned position embedding. A fixed

number of embeddings (32 in the T5 model) are learned, each corresponding to a range

of possible key-query offsets, with ranges increasing logarithmically up to an offset of 128,

beyond which all relative positions are assigned to the same embedding.

The T5 model is roughly equivalent to the original Transformer proposed by Vaswani et al.

[2], with the exception of removing the Layer Norm bias, placing the layer normalization

outside the residual path, and using the different position embedding scheme described

above.

To study the scalability of these models, [4] experiment with how performance changes

as the models are made to have more parameters or layers. Training large models can
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"translate English to German: That is good."

"cola sentence: The 
course is jumping well."

"summarize: state authorities 
dispatched emergency crews tuesday to 
survey the damage after an onslaught 
of severe weather in mississippi…"

"stsb sentence1: The rhino grazed 
on the grass. sentence2: A rhino 

is grazing in a field."
T5

"Das ist gut."

"not acceptable"

"six people hospitalized after 
a storm in attala county."

"3.8"

Figure 3.6: A diagram of text-to-text framework of [4]. “T5” refers to the model, which
is dubbed as the “Text-to-Text Transfer Transformer”.

be non-trivial since they might not fit on a single machine and require a great deal of

computation. As a result, they use a combination of model and data parallelism and train

models on ”slices” of Cloud TPU Pods1. They leverage the Mesh TensorFlow library [141]

for ease of implementation of both model parallelism and data parallelism [142].

3.3 Deep Learning for Audio

3.3.1 EnCodec

The EnCodec model is a convolutional encoder-decoder architecture designed for efficient

audio compression and generation. It consists of three main components:

1. Encoder (E): An encoder network that takes an audio signal as input and outputs a

latent representation z using a series of convolutional layers and a sequence modeling

component (LSTM).

2. Quantization Layer (Q): A quantization layer that compresses the latent rep-

resentation z into a discrete representation zq using Residual Vector Quantization

(RVQ). This enables efficient compression by quantizing the latent space.

3. Decoder (G): A decoder network that reconstructs the time-domain audio signal x̂

from the compressed latent representation zq using transposed convolutional layers.

1TPU pods are multi-rack ML supercomputers that contain 1,024 TPU v3 chips connected via a high-
speed 2D mesh interconnect with supporting CPU host machines.
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Figure 3.7: EnCodec: an encoder-decoder codec architecture which is trained with
reconstruction (ℓf and ℓt) as well as adversarial losses (ℓg for the generator and ℓd for the
discriminator). The residual vector quantization commitment loss (ℓw) applies only to
the encoder. Optionally, we train a small Transformer language model for entropy coding

over the quantized units with ℓl, which reduces bandwidth even further. [5]

The EnCodec model is trained end-to-end to minimize a reconstruction loss applied over

both time and frequency domains, together with a perceptual loss in the form of dis-

criminators operating at different resolutions. The encoder-decoder architecture is a sim-

ple streaming, convolutional-based model with sequential modeling components applied

over the latent representation, both on the encoder and decoder sides. This modeling

framework has shown great results in various audio-related tasks, such as source sepa-

ration, enhancement, neural vocoders, audio codecs, and artificial bandwidth extension

[143, 144, 145, 146, 52, 147, 148]. The RVQ layer quantizes the output of the encoder

into a compressed representation by projecting the input vector onto the closest entry in a

codebook of a given size. It refines this process by computing the residual after quantiza-

tion and further quantizing it using additional codebooks. By selecting a variable number

of residual steps during training, a single model can support multiple bandwidth targets.

Additionally, a small Transformer-based language model is trained to estimate the prob-

ability distribution over the codebooks, enabling efficient entropy coding for compression

and decompression faster than real-time on a single CPU core.

3.3.2 Residual Vector Quantizer

Neural Compression techniques have emerged as a new approach, employing neural net-

works to represent, compress, and reconstruct data, potentially achieving high compres-

sion rates with nearly zero perceptual information loss. In the audio domain, neural
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Figure 3.8: RVQ breaks down the quantization process across multiple layers, each
handling the residual error from the preceding one. This allows the system to be scaled

to operate on different bitrates (by scaling the number of layers).[6]

audio codecs based on Residual Vector Quantization have surpassed traditionally

handcrafted pipelines, with state-of-the-art AI models like Google’s SoundStream[149] and

EnCodec[5] by Meta AI demonstrating proficiency in encoding audio signals across a broad

spectrum of bitrates.

3.3.2.1 Neural Compression

Neural Compression aims to transform various data types, such as pixels (images), wave-

forms (audio), or frame sequences (video), into more compact representations, like vectors.

Instead of recording every pixel value or waveform sample, Neural Compression learns to

identify critical features or patterns in the data. These learned features are then used to

reconstruct the data with high accuracy, analogous to the concept of autoencoders in deep

learning.

3.3.2.2 Neural Audio Codecs

Neural audio codecs employ deep neural networks to translate recorded sound, a digital

audio signal, into a given content format while maintaining the original qualities of the

sound and reducing file size and bitrate. The goal is to achieve high compression rates

while preserving perceptual quality.
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3.3.2.3 Residual Vector Quantization (RVQ)

RVQ is a key component in state-of-the-art neural audio codecs, enabling high compression

rates by quantizing high-dimensional vectors into lower-dimensional representations.

Basic Idea The central idea behind RVQ is to utilize a cascade of codebooks, each

progressively approximating the residual error from the previous stage, rather than at-

tempting to quantize high-dimensional vectors with a single, large codebook.

RVQ Algorithm The RVQ algorithm follows a general quantization process, as out-

lined in Algorithm 1 from the SoundStream paper [149]. The algorithm takes input data

and a set of codebooks as input and outputs the indices of the quantized vectors. The

process is as follows:

Algorithm 1: Residual Vector Quantization

Input : y = enc(x) the output of the encoder, vector
quantizers Qi for i = 1 . . . Nq

Output: the quantized ŷ
1 ŷ ← 0.0
2 residual← y
3 for i← 0 to Nq do
4 ŷ+ = Qi(residual)
5 residual− = Qi(residual)

6 end for
7 return ŷ

The algorithm iterates over a set of codebooks, where each codebook represents a quanti-

zation level. For each codebook, the algorithm finds the indices of the closest codewords

(centroids) to the input data or residuals from the previous stage. These indices are

stored, and the residuals are computed by subtracting the corresponding codewords from

the input data or previous residuals. The process continues until all codebooks have been

processed, and the final set of indices is returned.

Codebook Construction The codebooks used in RVQ can be constructed in various

ways, such as using uniform hypercubes or more sophisticated partitioning schemes like k-

means clustering. The choice of codebook construction method can impact the compression

efficiency and reconstruction quality.
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Figure 3.9: Cortex is made up of sulco-gyral structures.[7]

Computational Efficiency RVQ offers significant computational savings compared

to traditional vector quantization (VQ) methods, especially in high-dimensional spaces.

Instead of using a single, high-resolution codebook, RVQ employs a series of smaller code-

books, reducing the computational cost while maintaining good approximation accuracy.

3.3.2.4 Reconstruction and Decoding

After the quantization process, the compressed signal is passed to a decoder, which recon-

structs the audio stream from the quantized indices and codebooks. The reconstructed

audio is then compared to the original using a discriminator component, measuring losses

such as discriminator/generator losses, waveform and mel-spectrogram losses, and com-

mitment losses to ensure the output closely mirrors the initial input.

3.4 Brain Regions

The human brain is a highly complex and organized structure, consisting of various regions

that work together to process and interpret sensory information, including auditory stimuli

such as music. Of particular interest in the study of music perception are the regions of

the cerebral cortex, the outermost layer of the brain responsible for higher-order cognitive

functions [150].
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Figure 3.10: Pathways for Sensory Perception.[8]

3.4.1 Cerebral Cortex

The cerebral cortex is divided into four main lobes: frontal, parietal, temporal, and oc-

cipital. Each lobe is further subdivided into smaller regions, each with specific functions

[151]. The surface of the cerebral cortex is characterized by a series of folds and ridges,

known as sulci and gyri, respectively. Sulci are the grooves or fissures that separate the

gyri, which are the bumps or ridges of the cortex. These structures increase the surface

area of the cortex, allowing for greater processing power within the confined space of the

skull [150].

3.4.1.1 Auditory Cortex

The auditory cortex, located in the temporal lobe, is crucial for the perception and pro-

cessing of sound, including music [152]. It is divided into the primary auditory cortex

(A1), secondary auditory cortex (A2), and higher-order auditory areas. A1, also known

as the superior temporal gyrus (STG), is responsible for the initial processing of auditory

information, such as pitch, frequency, and intensity discrimination [153]. The STG is fur-

ther divided into several subregions, including the planum temporale (PT) and Heschl’s

gyrus (HG), which are particularly important for music perception [154]. A2 and higher-

order auditory areas, such as the superior temporal sulcus (STS) and middle temporal

gyrus (MTG), are involved in more complex auditory processing, such as the recognition
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Figure 3.11: human auditory cortex[9]

of melodies, harmonies, and rhythms [155]. These regions also contribute to the inte-

gration of auditory information with other sensory modalities, such as visual and motor

information, which is essential for the holistic experience of music [152]. Studies using

fMRI have shown that the auditory cortex is highly active during music listening tasks,

with distinct patterns of activation observed for different musical features, such as pitch,

timbre, and rhythm [155]. Moreover, the auditory cortex exhibits functional specialization,

with certain subregions being more responsive to specific aspects of music.

3.4.1.2 Frontal Cortex

The frontal cortex, particularly the prefrontal cortex (PFC), is involved in higher-order

cognitive functions, such as attention, working memory, and decision-making [156]. In the

context of music perception, the PFC is thought to play a role in the cognitive processing

of musical structure, such as the perception of key, harmony, and musical syntax [157, 158].

The inferior frontal gyrus (IFG), which includes Broca’s area, is another important region

in the frontal cortex for music perception. Although primarily associated with language

processing, the IFG has also been implicated in the processing of musical syntax and the

detection of musical violations [159, 160]. This suggests that there may be shared neural

resources for the processing of structured sequences in both language and music.
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Figure 3.12: human Language Cortex[10]

3.4.1.3 Parietal Cortex

The parietal cortex, particularly the inferior parietal lobule (IPL), is involved in the pro-

cessing of musical structure and the integration of auditory and motor information [152].

The IPL, which includes the supramarginal gyrus (SMG) and angular gyrus (AG), is

thought to be important for the perception of musical meter and the temporal organiza-

tion of sound [161]. The intraparietal sulcus (IPS) is another region in the parietal cortex

that has been implicated in music perception. The IPS is involved in the processing of

numerical and spatial information, and it has been shown to be active during tasks that

involve the perception of musical intervals and the mental transformation of melodies [162].

3.5 fMRI Scans

Functional Magnetic Resonance Imaging (fMRI) is a powerful neuroimaging technique that

allows researchers to measure brain activity by detecting changes in blood oxygenation

levels. fMRI scans provide valuable insights into the functional organization of the brain

and have become an essential tool in the field of cognitive neuroscience.

3.5.1 What is an Magnetic Resonance Image (MRI)?

We now give a brief description of what a Magnetic Resonance Image is. This can be

important in order to understand some basic characteristics of the random variables we

are going to use. It is worthwhile to point out that some preprocessing is necessary in
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this type of image in order to take raw data from the scanner and prepare them for

statistical analysis. Some of the steps usually applied in the image preprocessing are

motion correction, slice timing correction, spatial filtering, intensity normalization, and

temporal filtering. In this case, an MRI can be viewed as a matrix of numbers that

correspond to spatial locations. When we view an image, we do so by representing the

numbers in the image in terms of grayscale values and each element in the image is called

as a voxel, which is the three-dimensional analog to a pixel. See figure 3.13 for a visual

description.

288 27 38 364 621

264 21 97 500 640

271 22 133 543 647

312 28 113 521 649

390 53 58 424 635

Figure 3.13: An image as a graphical representation of a matrix. The grayscale values
in the image on the left correspond to numbers, shown for a specific set of voxels in the

closeup section on the right ([? ]).

3.5.2 What is an fMRI experiment?

An fMRI experiment involves an individual lying in an MRI scanner for a period of time,

usually around 5 minutes, while their brain activity is measured. During this time, the

scanner can acquire up to 100 low-resolution images of the brain (see the left panel of

Figure 3.14). The individual may receive a sequence of stimuli according to a specific

experimental design or may be asked to remain in a resting state without any external

stimulation.
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MRI VS fMRI

high
spatial
resolution
(1mm) low spatial

resolution
(~3-5mm)

MRI fMRI

Figure 3.14: Left panel: Diferences between MRI and fMRI images. Right panel: The
MRI scanner at the Institute of Radiology of the University of São Paulo.

The types of stimuli presented to the subject during an fMRI experiment depend on

the research question being investigated and can include sensory, visual, and/or auditory

stimuli. There are three main types of experimental designs used in fMRI experiments:

block design, event-related design, and mixed design. The choice of design depends on the

specific goals of the experiment and the trade-offs between statistical power and flexibility.

3.5.3 The BOLD signal and the hemodynamic response function (HRF)

fMRI measures brain activity indirectly by detecting changes in the blood-oxygenation-

level-dependent (BOLD) signal. When neurons in a specific brain region become active,

there is an increase in blood flow to that area, which delivers more oxygen than is needed

to replenish the cells. This surplus of oxygenated blood leads to a change in the local

magnetic properties, which can be detected by the MRI scanner. The time course of

the BOLD signal in response to a brief stimulus is known as the hemodynamic response

function (HRF) (see Figure 3.15). The HRF typically peaks around 4-6 seconds after the

onset of neuronal activity and then gradually returns to baseline. By measuring the BOLD

signal over time, fMRI can provide a picture of the neural activity in different brain regions

during a task or in response to a stimulus.
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Figure 3.15: Hemodynamic Response Function:h.

x(t) = (h ∗ f)(t) =
∫

h(τ)f(t− τ)dτ (3.18)

Figure 3.16: Left panel: Observed BOLD response (red line) and the stimulus time
series (blue line). Right panel: Observed BOLD response (blue line) and the expected

BOLD response (red line).
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3.5.4 Mathematical Representation of fMRI data

The fMRI data X can be represented as a set of time series

X = {xv|v(0) ∈ [0,W ),v(1) ∈ [0, H),v(2) ∈ [0, D)}. (3.19)

Here v = [v(0),v(1),v(2)] represents the 3D spatial coordinates, and xv ∈ RT represents

the fMRI signal time series at the corresponding spatial location

xv = [x
(0)
v ,x

(1)
v , · · · ,x(T−1)

v ], (3.20)

with W,H,D, T respectively denoting the width, height, depth, and length of the time

series in the fMRI data.

The principle of localization in brain function organization suggests that brain functions

are carried out in a set of brain regions [163]. This implies that the brain space can be

divided into several brain regions based on function, and there are similarities in neuronal

activation within each brain region. Therefore, in fMRI data, the set of time series for

each brain region can be represented as

Ai = {xv|v ∈ Vi}, i ∈ [0, N), (3.21)

in which Vi represents the set of three-dimensional coordinates for the brain region labeled

as i, and N represents the number of brain region labels. Therefore, we have

X =

N−1⋃
i=0

Ai, (3.22)

implying that V can be represented as the union of Ai.
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Methodology

4.1 Task Overview

Let G be a conditional music generation model that can be conditioned on inputs from

different modalities defined in set M . The model would have modality-specific encoders

Em that map input in modality m ∈ M to a common prior space of G to guide the

generation of music. Thus for a conditional input cm of modality m ∈ M , music gm is

generated as follows using the modality encoder Em:

gm = G(Em(cm)) (4.1)

Let B ∈ Rs×v denote the fMRI response tensor for a subject listening to a music sample

K, where s is the number of scans taken and v is the number of voxel intensities. Each

voxel intensity corresponds to the BOLD response at a particular location of the subject’s

brain during the scan. For music sample K, let k be one of its modality representations

and T ∈ Rr×d be the computed embedding of k using encoder Ek, where r is the num-

ber of embeddings computed for the length of the sample and d being the dimension of

embeddings.

Following the Map method [164], the task is to learn a mapping Φ : B → T , i.e. the brain

scans are mapped to prior embedding space of G. Using the learned mapping, the listened

music K can be reconstructed into Kr:

Kr = G(Φ(B)) (4.2)

34
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Figure 4.1: Proposed Pipeline for Music Generation from Brain Scans.

The mapping Φ is parameterized by a function fθ with parameters θ, and is learned

from a training set D = {Bi, Ek(Ki)}, where Bi and Ek(Ki) are the brain scan sequences

and corresponding prior embeddings computed from a specific modality representation of

music sample Ki. The learned mapping Φ = fθ can then be applied to unseen brain scan

sequences Bs to predict the corresponding prior embeddings Ts, enabling the generation

of reconstructed music stimuli K′
s via the generative model G.

Practically, we implement MusicGen [11] as the music generation model G. We experi-

ment with audio waveforms, text, and chromagrams as modality representations of music

samples and their corresponding encoders EnCodec [5], T5 [4], and quantizer respectively,

to learn the mapping function Φ modelled as an L-2 regularized linear regression. The

raw fMRI scans of 5 subjects listening to 540 music samples are processed to extract

voxel-time-series on the cortical surfaces in particular 148 regions of interest based on the

Destriuex Atlas [7] defined as set C. An ensemble of Φr, ∀r ∈ C, models are learned for each

ROI independently, picking the top models based on the correlation score and averaging

their predictions.

Figure 4.1 shows the proposed pipeline of our methodology. We process raw fMRI scans

to parcelllate the cortical surface to identify regions of interest as per the Destrieux atlas.

From these ROI voxels or voxel time series, the conditioning tensor is predicted using

a trained L2-regularized linear regression ensemble model. Using the condition tensor,

MusicGen generates the listened music, thus achieving our goal.
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The preceding formulation encapsulates the principles involved in reconstructing music

from brain activity, without diving into specific implementation details, which shall be

discussed in subsequent sections.

4.2 Extracting Cortical Voxel Time-series

In the field of functional neuroimaging, the accurate extraction of voxel time series from

specific cortical regions is crucial for understanding how different brain areas respond to

experimental stimuli or cognitive tasks. This section outlines the methodology employed to

obtain cortical voxel time series from functional Magnetic Resonance Imaging (fMRI) data,

leveraging the high-resolution anatomical information provided by structural T1-weighted

MRI scans. The analysis pipeline begins with the acquisition of two distinct types of MRI

data for each subject: (1) a high-resolution T1-weighted structural scan, which provides

excellent contrast between gray matter, white matter, and cerebrospinal fluid (CSF), and

(2) a series of T2*-weighted functional scans, which capture the Blood Oxygenation Level

Dependent (BOLD) signal changes associated with neural activity over time. While the

structural scan offers detailed anatomical information, the functional scans lack sufficient

spatial resolution and contrast to delineate cortical structures accurately.

To overcome this limitation, we employ a surface-based analysis approach, which involves

reconstructing the cortical surface from the structural scan and subsequently mapping the

functional data onto this reconstructed surface. This process enables the extraction of

voxel time series from specific cortical regions defined by anatomical atlases, facilitating

region-of-interest (ROI) analyses and structure-function investigations.

The following subsections detail the key steps involved in this process, beginning with the

reconstruction of the cortical surface from the structural scan and its parcellation using

the Destrieux Atlas [7]. Subsequently, we describe the registration of the functional scans

to the structural scan space, allowing the mapping of the parcellated cortical regions onto

the functional data. This integration of anatomical and functional information ultimately

enables the extraction of cortical voxel time series from the fMRI data, corresponding to

the predefined ROIs specified by the Destrieux Atlas.
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Figure 4.2: Intensity normalized (left) and skull-stripped images (right)

4.2.1 Reconstruction of Cortical Surface

The accurate reconstruction of the cortical surface from structural MRI data is a crucial

step in enabling surface-based analysis of brain structure and function. Let I ∈ RW×H×D

denote the T1-weighted MRI volume of a subject, whereW , H, and D represent the width,

height, and depth of the volume, respectively.

To correct for intensity inhomogeneities arising from magnetic field distortions and RF field

non-uniformities, a non-parametric non-uniform intensity normalization (N3) technique

[165] is applied to I, resulting in a corrected volume Ic. Subsequently, non-brain tissues

such as the skull and dura are removed from Ic using a deformable model approach [166],

yielding a skull-stripped volume Is as shown in figure 4.2.

The intensity-normalized, skull-stripped volume Is is then segmented into white matter,

gray matter, and non-brain tissues using a custom segmentation algorithm [166]. This

method exploits the locally planar structure of the gray/white matter interface by detect-

ing the plane of least variance Pv(x) at each voxel x ∈ R3 and using intensity information

within Pv(x) to guide the segmentation decision. Geometric constraints are also incor-

porated based on the knowledge that white matter has higher intensity than gray matter
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Figure 4.3: Skull-stripped (left) and white matter-labeled images (right)

Figure 4.4: Result of calculating connected components (right) for white matter-labeled
volume (left). Connected right and left hemisphere voxels are labeled dark and light,

respectively.

in Is. The segmentation process results in a binary volume S ∈ 0, 1W×H×D as shown in

figure 4.3, where S(x) = 1 if x is classified as white matter, and S(x) = 0 otherwise.

Two cutting planes, C1 and C2, are computed to separate the cerebral hemispheres as

well as disconnect subcortical regions from the cortical components [166]. A connected

components analysis is then performed on S to obtain two hemispheric volumes HL and

HR, representing the left and right hemispheres, respectively as shown in figure 4.4. Any

interior holes in HL and HR are filled to create topologically closed surfaces.
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Figure 4.5: Intersection of the tessellated white matter surface with the skull-stripped
MRI volume.

Figure 4.6: Intersection of the tessellated pial surface with the skull-stripped MRI
volume

The hemispheric white matter volumesHL andHR are covered with triangular tessellations

TL and TR, respectively, by representing each face between a white matter voxel and an

adjacent non-white matter voxel using two triangles [166]. These initial tessellated surfaces

are deformed using a deformable surface algorithm to obtain accurate reconstructions SL
and SR of the gray/white matter interface for the left and right hemispheres, respectively

as shown in figure 4.5. A similar procedure is employed to reconstruct the pial surfaces

PL and PR by deforming SL and SR outwards towards the gray matter/CSF boundary as

shown in figure 4.6, guided by the intensity values in Is.

The resulting surface reconstructions SL, SR, PL, and PR typically contain topological

defects, primarily in subcortical regions, that prevent them from being accurately unfolded

or inflated. These defects are manually edited by adding control points to the segmented

volume S and recomputing the tessellations TL and TR, guided by the surface inflation

procedure [166, 167].
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Figure 4.7: Original (left), gray/white boundary (middle), and pial surface (right)
reconstructions of a left hemisphere.

The corrected cortical surface reconstructions in figure 4.7 SL, SR, PL, and PR enable

surface-based analysis, visualization, and cross-subject averaging, as described in subse-

quent sections.

4.2.2 Cortical Surface Parcellation Using Atlases

The reconstructed cortical surface is parcellated into anatomically distinct regions using

surface-based atlases. This parcellation is crucial for performing region-of-interest (ROI)

analyses and investigating structure-function relationships in the human brain. We employ

the Destrieux Atlas [7], a surface-based parcellation scheme that subdivides the cortical

surface into 74 regions of interest (ROIs) (refer table 4.1) in both hemispheres based on

sulcal patterns and anatomical landmarks as shown in figure 4.8. Thus we have a total of

148 ROIs in the whole brain.

Let S be the reconstructed cortical surface mesh, represented as a set of vertices V and

triangular faces F . The parcellation process involves establishing a mapping ϕ : S → A,
where A is the atlas space defined by the Destrieux Atlas. This mapping is achieved

through a non-rigid surface registration technique that aligns the individual subject’s cor-

tical surface with the atlas template. Specifically, we employ a spherical harmonic-based

surface registration algorithm [167] that minimizes the mean squared difference between

the folding patterns of the subject’s cortical surface and the atlas template. The folding

patterns are quantified using the average convexity measure C(v) defined at each vertex

v ∈ V of the surface mesh:

C(v) =

∫ T

0

∂Js
∂v
· n(v, t), dt (4.3)

Here, Js is the energy functional used for surface inflation [167], n(v, t) is the unit normal

vector at vertex v and time t, and T is the total number of time steps in the inflation
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Figure 4.8: Pial view of the Destrieux Atlas Parcellation Regions
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process. The average convexity C(v) captures the large-scale folding patterns of the cor-

tical surface while being relatively insensitive to small folds and noise. The registration

algorithm finds the optimal mapping ϕ that maximizes the correlation between the aver-

age convexity maps of the subject’s cortical surface and the atlas template. This mapping

is then used to transfer the anatomical labels from the atlas space A onto the subject’s

cortical surface S, resulting in a parcellated surface with 148 distinct ROIs based on the

Destrieux Atlas.

The parcellated cortical surface serves as the basis for subsequent region-of-interest analy-

ses, enabling the investigation of structural and functional properties within anatomically

defined regions. Furthermore, the surface-based parcellation facilitates group-level anal-

yses by establishing a common coordinate system across subjects, allowing for accurate

inter-subject averaging and comparison of cortical measures.

4.2.3 Registration of Functional Scans to Structural Scans

The accurate registration of functional MRI scans to high-resolution structural scans is a

crucial step in enabling the mapping of the parcellated cortical surface onto the functional

data, thereby allowing the extraction of cortical voxel time-series for subsequent analysis.

This registration process aims to establish a spatial correspondence between the functional

and structural images, accounting for potential misalignments arising from subject motion,

image distortions, and differences in acquisition parameters.

The effective approach for this registration task is the Boundary-Based Registration (BBR)

method [168]. BBR treats the structural and functional images asymmetrically, leveraging

the high-quality anatomical contrast of the structural scan to extract surfaces that separate

brain tissues and structures. The functional image, which may exhibit lower resolution or

intensity inhomogeneities, is then aligned to the structural reference by maximizing the

intensity gradient across the tissue boundaries delineated by the extracted surfaces.

The registration process involves the following key steps as shown in figure 4.9:

1. Assume the functional and structural images are in roughly the same location. If

not, align the outlines of the images.

2. Exploit the different contrast weightings of the anatomical and functional images,

a property known as mutual information. Areas that appear dark in the structural

image (e.g., cerebrospinal fluid) will appear bright in the functional image, and vice
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Table 4.1: List of anatomical parcellations in Destrieux Atlas [7]

Index Short name Long name (TA nomenclature is bold typed)

1 G and S frontomargin Fronto-marginal gyrus (of Wernicke) and sulcus
2 G and S occipital inf Inferior occipital gyrus (O3) and sulcus
3 G and S paracentral Paracentral lobule and sulcus
4 G and S subcentral Subcentral gyrus (central operculum) and sulci
5 G and S transv frontopol Transverse frontopolar gyri and sulci
6 G and S cingul-Ant Anterior part of the cingulate gyrus and sulcus (ACC)
7 G and S cingul-Mid-Ant Middle-anterior part of the cingulate gyrus and sulcus (aMCC)
8 G and S cingul-Mid-Post Middle-posterior part of the cingulate gyrus and sulcus (pMCC)
9 G cingul-Post-dorsal Posterior-dorsal part of the cingulate gyrus (dPCC)
10 G cingul-Post-ventral Posterior-ventral part of the cingulate gyrus (vPCC, isthmus of the cingulate gyrus)
11 G cuneus Cuneus (O6)
12 G front inf-Opercular Opercular part of the inferior frontal gyrus
13 G front inf-Orbital Orbital part of the inferior frontal gyrus
14 G front inf-Triangul Triangular part of the inferior frontal gyrus
15 G front middle Middle frontal gyrus (F2)
16 G front sup Superior frontal gyrus (F1)
17 G Ins lg and S cent ins Long insular gyrus and central sulcus of the insula
18 G insular short Short insular gyri
19 G occipital middle Middle occipital gyrus (O2, lateral occipital gyrus)
20 G occipital sup Superior occipital gyrus (O1)
21 G oc-temp lat-fusifor Lateral occipito-temporal gyrus (fusiform gyrus, O4-T4)
22 G oc-temp med-Lingual Lingual gyrus, lingual part of the medial occipito-temporal gyrus, (O5)
23 G oc-temp med-Parahip Parahippocampal gyrus, parahippocampal part of the medial occipito-temporal gyrus, (T5)
24 G orbital Orbital gyri
25 G pariet inf-Angular Angular gyrus
26 G pariet inf-Supramar Supramarginal gyrus
27 G parietal sup Superior parietal lobule (lateral part of P1)
28 G postcentral Postcentral gyrus
29 G precentral Precentral gyrus
30 G precuneus Precuneus (medial part of P1)
31 G rectus Straight gyrus, Gyrus rectus
32 G subcallosal Subcallosal area, subcallosal gyrus
33 G temp sup-G T transv Anterior transverse temporal gyrus (of Heschl)
34 G temp sup-Lateral Lateral aspect of the superior temporal gyrus
35 G temp sup-Plan polar Planum polare of the superior temporal gyrus
36 G temp sup-Plan tempo Planum temporale or temporal plane of the superior temporal gyrus
37 G temporal inf Inferior temporal gyrus (T3)
38 G temporal middle Middle temporal gyrus (T2)
39 Lat Fis-ant-Horizont Horizontal ramus of the anterior segment of the lateral sulcus (or fissure)
40 Lat Fis-ant-Vertical Vertical ramus of the anterior segment of the lateral sulcus (or fissure)
41 Lat Fis-post Posterior ramus (or segment) of the lateral sulcus (or fissure)
42 Pole occipital Occipital pole
43 Pole temporal Temporal pole
44 S calcarine Calcarine sulcus
45 S central Central sulcus (Rolando’s fissure)
46 S cingul-Marginalis Marginal branch (or part) of the cingulate sulcus
47 S circular insula ant Anterior segment of the circular sulcus of the insula
48 S circular insula inf Inferior segment of the circular sulcus of the insula
49 S circular insula sup Superior segment of the circular sulcus of the insula
50 S collat transv ant Anterior transverse collateral sulcus
51 S collat transv post Posterior transverse collateral sulcus
52 S front inf Inferior frontal sulcus
53 S front middle Middle frontal sulcus
54 S front sup Superior frontal sulcus
55 S interm prim-Jensen Sulcus intermedius primus (of Jensen)
56 S intrapariet and P trans Intraparietal sulcus (interparietal sulcus) and transverse parietal sulci
57 S oc middle and Lunatus Middle occipital sulcus and lunatus sulcus
58 S oc sup and transversal Superior occipital sulcus and transverse occipital sulcus
59 S occipital ant Anterior occipital sulcus and preoccipital notch (temporo-occipital incisure)
60 S oc-temp lat Lateral occipito-temporal sulcus
61 S oc-temp med and Lingual Medial occipito-temporal sulcus (collateral sulcus) and lingual sulcus
62 S orbital lateral Lateral orbital sulcus
63 S orbital med-olfact Medial orbital sulcus (olfactory sulcus)
64 S orbital-H Shaped Orbital sulci (H-shaped sulci)
65 S parieto occipital Parieto-occipital sulcus (or fissure)
66 S pericallosal Pericallosal sulcus (S of corpus callosum)
67 S postcentral Postcentral sulcus
68 S precentral-inf-part Inferior part of the precentral sulcus
69 S precentral-sup-part Superior part of the precentral sulcus
70 S suborbital Suborbital sulcus (sulcus rostrales, supraorbital sulcus)
71 S subparietal Subparietal sulcus
72 S temporal inf Inferior temporal sulcus
73 S temporal sup Superior temporal sulcus (parallel sulcus)
74 S temporal transverse Transverse temporal sulcus
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Figure 4.9: Boundary Based Registration Pipeline

versa. The registration algorithm moves the images around to test different overlays,

matching the bright voxels on one image with the dark voxels of the other image, and

dark with bright, until it finds an optimal match that cannot be improved further.

3. Once the best match has been found, apply the same transformations used to warp

the structural image to the template space to the functional images.

After this registration step, the functional images are now aligned with the structural scan

space, enabling the mapping of the parcellated cortical regions obtained from the Destrieux

Atlas onto the functional data. Consequently, the voxel time series corresponding to each

of the 148 ROIs defined by the Destrieux Atlas can be extracted from the registered

functional scans.

4.3 Conditional Music Generation Model: MusicGen

In this section, we describe the MusicGen model [11] for conditional music generation,

which is capable of generating music given textual descriptions, audio waveforms, or chro-

magrams as input. We discuss the model architecture, conditioning on different modalities,

and training and evaluation procedures.
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Figure 4.10: MusicGen architechture by Meta. [11]

4.3.1 Model Architecture and Music Generation

Music generation is a challenging task that involves creating original and coherent musical

pieces. Recent advances in deep learning have led to the development of models that can

generate music by modeling it as a sequence of tokens using transformers. MusicGen is

one such model that uses an autoregressive transformer architecture to generate music

tokens, conditioned on the input modality encodings.

The MusicGen model is trained on a large dataset of music samples, conditioned on dif-

ferent modalities. During training, the model learns to generate new music samples that

are similar to the input samples, while also being conditioned on the input modality en-

codings. The model uses causal self-attention to ensure that the generated tokens are only

conditioned on the previous tokens in the sequence. The model also uses cross-attention

to condition the generation on the input modality encodings.

The MusicGen model is based on an autoregressive transformer [2] architecture, which

generates music one token at a time. The model takes as input a sequence of tokens,

where each token represents a quantized audio frame or a text or chromagram token.

The model then predicts the next token in the sequence, conditioned on the previous

tokens.The key idea is the use of codebook interleaving patterns to efficiently model the

parallel streams from the RVQ quantization. Each pattern P = (P0, P1, . . . , PS) defines



Chapter 4. Methodology 46

Figure 4.11: Condition on Audio Waveforms [11]

a way to parallelize the prediction of quantized values across time steps and codebooks.

The ”delay” pattern from prior work [169] is used, resulting in 1500 autoregressive steps

for 30 seconds of audio.

The audio tokenization model used in MusicGen is EnCodec [5], a non-causal five layers

model for 32 kHz monophonic audio with a stride of 640, resulting in a frame rate of

50 Hz, and an initial hidden size of 64, doubling at each of the model’s five layers. The

embeddings are quantized with a RVQ with four quantizers, each with a codebook size of

2048. The model is trained on one-second audio segments cropped at random in the audio

sequence.

The input modalities can be audio waveforms, chromagrams, or text. The MusicGen

model uses different encoders to map the input modalities into a sequence of discrete

tokens, which are then used as input to the model. The encoders used for each modality

are described in the following sections.

4.3.2 Conditioning the Model

4.3.2.1 Audio Waveform Conditioning

When conditioning MusicGen on audio waveforms, the authors use an encoder called En-

Codec to map the raw audio waveform into a sequence of discrete tokens (Figure 4.11).

These tokens are then used as input to MusicGen, which generates new music samples

based on the learned patterns in the input sequence. The EnCodec encoder uses a con-

volutional autoencoder architecture with a latent space quantized using Residual Vector
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Figure 4.12: Condition on Chromagrams [11]

Quantization (RVQ). The encoder takes in raw audio waveforms and outputs a sequence

of discrete tokens, which are then used as input to MusicGen.

4.3.2.2 Chromagram Conditioning

When conditioning MusicGen on chromagrams, the authors use a quantizer to map the

chromagram into a sequence of discrete tokens (Figure 4.12). These tokens are then used

as input to MusicGen, which generates new music samples based on the learned patterns

in the input sequence. The quantizer maps the chromagram into a sequence of discrete

tokens by quantizing each chroma bin into one of a fixed number of levels. The resulting

sequence of discrete tokens is then used as input to MusicGen.

The chromagrams are computed with a window size of 214 and a hop size of 212, and

quantized by taking the argmax at each time step. This unsupervised approach avoids the

need for supervised proprietary data. During training, the condition is dropped with a

probability of 0.2, and during inference, classifier-free guidance [69] is used with a guidance

scale of 3.0.
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Figure 4.13: Condition on Text [11]

4.3.2.3 Text Conditioning

When conditioning MusicGen on text, the authors use a pre-trained language model called

T5 to encode the text into a sequence of discrete tokens (Figure 4.13). These tokens are

then used as input to MusicGen, which generates new music samples based on the learned

patterns in the input sequence. The T5 encoder uses a transformer architecture to encode

the input text into a sequence of discrete tokens. The encoder takes in raw text and

outputs a sequence of discrete tokens, which are then used as input to MusicGen.

For text conditioning, a pretrained text encoder is used to obtain a conditioning tensor

C ∈ RTC×D, where D is the inner dimension of the autoregressive model. The authors

experiment with different text encoders: T5 [170], FLAN-T5 [171], and CLAP [172].

4.3.3 Training and Evaluation

The model was trained on 20K hours of licensed music data, including an internal dataset

of 10K high-quality tracks, and the Shutterstock and Pond5 music collections with 25K

and 365K instrument-only tracks, respectively. The audio is downmixed to mono unless

otherwise specified. For evaluation, the authors used the MusicCaps benchmark [59],

consisting of 5.5K ten-second samples with textual descriptions, and a 1K subset balanced
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across genres for qualitative evaluation. Objective metrics used were the Fréchet Audio

Distance (FAD), Kullback-Leibler divergence (KL) over AudioSet labels, and the CLAP

score [172] for audio-text alignment.

4.4 Reconstructing Music from Cortical Voxel Time-series

The core objective of this work is to reconstruct music stimuli from cortical voxel time-

series, which represent the brain activity of subjects while listening to music. This section

describes the methodological framework employed to achieve this goal, building upon the

foundation laid in the previous sections regarding the extraction of cortical voxel time-

series from raw fMRI scans and the utilization of the MusicGen model for conditional

music generation.

The reconstruction process involves mapping the cortical voxel time-series, which capture

the temporal patterns of neural activity in different brain regions, to the prior embed-

ding space of the MusicGen model. This mapping enables the generation of reconstructed

music stimuli by conditioning the MusicGen model on the predicted prior embeddings.

We commence by introducing the Map Method [164], a general theoretical approach for

solving Brain-Conditional Multimodal Synthesis tasks, including the reconstruction of mu-

sic from brain signals. The Map Method involves learning a mapping from the cortical

voxel time-series to the prior space of a pretrained generative model, leveraging the pow-

erful generative capabilities of these models while focusing the learning task on the more

tractable problem of mapping brain signals to priors.

However, a key challenge arises due to the potential mismatch between the temporal

dimensions of the cortical voxel time-series and the prior embedding space. To address this,

we explore various temporal alignment techniques, including sliding window averaging,

skipped timesteps, and total averaging, to ensure compatibility between the input and

output representations.

Building upon the Map Method and temporal alignment strategies, we present a mapping

ensemble model that leverages the localized nature of brain function organization. This

approach independently models the relationship between the voxel time-series of each

anatomically defined region of interest (ROI) and the target prior embedding space. The

predictions from the top-performing ROIs, as determined by their correlation scores with

the ground truth embeddings, are combined through an ensemble averaging process to

obtain a more accurate and robust overall mapping.
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The following subsections delve into the technical details of the Map Method, the tem-

poral alignment problem and solutions, and the mapping ensemble model, providing a

comprehensive understanding of the methodological framework for reconstructing music

from cortical voxel time-series.

4.4.1 The Map Method

The Map Method [164] is a general theoretical approach for solving Brain-Conditional

Multimodal Synthesis tasks, which aim to decode brain signals back to perceptual ex-

periences across different modalities (Figure 4.14). This method involves mapping brain

signals to the prior space (semantic or detail priors) of a pretrained AIGC (AI Generated

Content) decoder model. The Map Method has gained popularity due to its advantages

of easy training, flexible implementation, and high fidelity of the generated content. Nu-

merous works have adopted the Map Method for various Brain-Conditional Multimodal

Synthesis tasks, including:

• Image-Brain-Image (IBI): [79, 173, 174, 80, 175, 176, 177, 178, 179, 87, 180, 181, 182,

183, 81, 184, 185, 78, 186, 187, 188, 189, 190, 191, 192]

• Video-Brain-Video (VBV): [193]

• Speech-Brain-Speech (SBS): [88]

• Music-Brain-Music (MBM): [95]

• Image-Brain-Text (IBT): [174, 194, 195, 196, 197]

• Video-Brain-Text (VBT) and Speech-Brain-Text (SBT): [92]

It involves mapping the cortical voxel time-series, which represent the brain activity, to

the prior space of a pretrained generative model for music synthesis. Let G be a pretrained

conditional generative model for music synthesis, capable of generating music g conditioned

on input priors p from a prior space P:

g = G(p), p ∈ P (4.4)

Let X = {xv|v ∈ V} represent the fMRI data, where xv ∈ RT is the time-series of

voxel intensities at spatial coordinate v over T time steps. We assume that the brain can

be divided into N functional regions R = Rii = 1N , where each region Ri is associated
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with a set of voxel coordinates Vi ⊆ V. The voxel time-series within each region can be

represented as Ai = {xv|v ∈ Vi}. The Map Method aims to learn a mapping Φi : Ai → P
for each brain region Ri, which maps the voxel time-series Ai to the prior space P of the

generative model G. This mapping is parameterized by a function fθi with parameters θi,

and is learned from a training set Di = Aij , pjj = 1Mi , where Aj
i are the voxel time-series

in region Ri when listening to music sample j, and pj is the corresponding ground truth

prior for that music sample. The objective is to minimize a loss function Li between the

predicted priors Φi(A
j
i ) and the ground truth priors pj :

θ∗i = argmin
θi

Mi∑
j=1

Li(Φi(A
j
i ), p

j) (4.5)

The learned mapping Φi = fθ∗i can then be applied to unseen voxel time-series A′
i in region

Ri to predict the corresponding prior Φi(A
′
i), enabling the generation of reconstructed

music g′ via the generative model G:

g′ = G(Φi(A
′
i)) (4.6)

In practice, an ensemble of mappings Φi
N
i=1 is learned for different brain regions, and their

predictions are combined (e.g., averaged) to obtain the final reconstructed music. The

Prior space P is of MusicGen which can be EnCodec, Chromagram or T5 tokens.

The core advantage of the Map Method is that it simplifies the complex task of directly

reconstructing modalities from brain signals by introducing an intermediate mapping step.

Instead of learning a direct mapping from brain signals to the target modality, the Map

Method learns a mapping from brain signals to the prior space of a pretrained generative

model. This allows leveraging powerful generative models that have been trained on large

datasets, while focusing the learning task on the mapping from brain signals to priors,

which can be easier to optimize.

However, the Map Method also has a potential limitation: biases introduced in the map-

ping space can propagate and amplify in the generation space, leading to semantic ambi-

guity in the reconstructed content. This issue, known as bias superposition, arises because

the Map Method only constructs the brain-prior connection and relies on the generative

model to decode the priors into the target modality.

Despite this limitation, the Map Method remains a popular choice for Brain-Conditional

Multimodal Synthesis due to its advantages of easy training, flexible implementation, and

high fidelity of the generated content when combined with powerful generative models.
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Figure 4.14: An overview of Map Method as applied to Music Generation. The Gen-
erative model’s encoder/tokenizers extract prior music embeddings. A mapping func-
tion/network is learned to minimize the similarity loss between the mapped brain-music
embedding and the prior music embeddings. Thus the mapped embeddings can condition

music generation models to reconstruct the listened music.

4.4.2 Temporal Alignment Problem

The Map Method involves learning a mapping Φ : B → T between the fMRI response

tensor B ∈ Rs×v and the prior embedding space T ∈ Rr×d, where s is the number of fMRI

scans, v is the number of voxel intensities, r is the number of embeddings computed by the

encoder Ek, and d is the embedding dimension. However, a key challenge arises due to the

potential mismatch between the temporal dimensions s and r. The number of fMRI scans

s is fixed and determined by the experimental setup, whereas the number of embeddings

r varies and depends on the specific encoder Ek. In many cases, r is larger than s, as the

encoder may compute embeddings at a higher temporal resolution than the fMRI scans.

To enable the learning of the mapping model Φ, a temporal alignment between s and r is

necessary. This can be achieved by either downsampling r to match s or downsampling

both s and r to a common smaller dimension.

In our work, we experimented with three techniques for temporal alignment (Figure 4.15):

Sliding Window Averaging: In this approach, the entries in T along the r dimension

are averaged using a sliding window operation to match the time ranges of a single fMRI

scan in B. Specifically, let w be the window size, and Ti ∈ Rw×d be the i-th window of

w consecutive embeddings in T . The sliding window averaging operation computes a new

embedding T̄i ∈ Rd as follows:
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Figure 4.15: Temporal Alignment Techniques: Sliding window averaging (top-left),
skipped timesteps (top-right) and total averaging (bottom)

T̄i =
1

w

w∑
j=1

Ti,j (4.7)

This process is repeated in a sliding window fashion across the entire embedding vector T ,

resulting in a downsampled embedding vector T̄ ∈ R⌊r/w⌋×d that aligns with the number

of fMRI scans s.

Skipped Timesteps: Instead of averaging the entries in T , this approach selects equidis-

tant entries in T to align with the number of fMRI scans s. Let k = ⌊r/s⌋ be the stride

size, and Ti ∈ Rd be the i-th entry in T . The skipped timesteps operation constructs a

new embedding vector T̂ ∈ Rs×d as follows:

T̂i = Ti×k (4.8)

Total Averaging: Rather than aligning r and s, this approach averages both the embed-

ding vector T and the fMRI response tensor B to obtain a single vector representation.

The total averaging operation computes a scalar embedding T̃ ∈ Rd and a scalar fMRI

response B̃ ∈ Rv as follows:

T̃ =
1

r

r∑
i=1

Ti, B̃ =
1

s

s∑
i=1

Bi (4.9)
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The mapping Φ is then learned to map the fMRI response B̃ to the aligned embedding

T̃ . These temporal alignment techniques enable the Map Method to handle the potential

mismatch between the temporal dimensions of the fMRI response tensor and the prior

embedding space, facilitating the learning of the mapping model Φ. The choice of technique

may depend on factors such as the desired temporal resolution, computational efficiency,

and the specific characteristics of the data.

4.4.3 Mapping Ensemble Model

The Map Method aims to learn a mapping Φ : B → T between the fMRI response tensor

B ∈ Rs×v and the prior embedding space T ∈ Rr×d, where s is the number of fMRI scans, v

is the number of voxel intensities, and d is the embedding dimension. As discussed earlier,

the fMRI data X can be divided into N brain regions Ai
N−1
i=0 based on the principle of

localization in brain function organization:

X =
N−1⋃
i=0

Ai, (4.10)

where Ai = {xv|v ∈ Vi} represents the set of voxel time series in the i-th brain region,

with Vi denoting the set of three-dimensional coordinates for that region. Leveraging this

brain region segmentation, we independently model the relationship between the voxel

time series B + roi ∈ Rs×vroi of a specific region of interest (ROI) and the aligned target

prior embedding T ∈ Rs×d, where vroi is the number of voxels in the ROI. The mapping for

the ROI is parameterized by a weight matrix Wroi ∈ Rvroi×d, and the predicted embedding

T̂roi ∈ Rs×d is computed as:

T̂roi = BroiWroi (4.11)

We use an L2-regularized linear regression to estimate the weight matrix Wroi on the

training dataset D = {(B(i)
roi, T

(i))}Mi=1, where B
(i)
roi ∈ Rs×vroi is the voxel time series for

the ROI when listening to the i-th music sample, and T (i) ∈ Rs×d is the corresponding

ground truth prior embedding. The objective is to minimize the following regularized loss

function:

L(Wroi) =
1

M

M∑
i=1

∥∥∥B(i)
roiWroi − T (i)

∥∥∥2
F
+ λ ∥Wroi∥2F (4.12)

where ∥·∥F denotes the Frobenius norm, and λ > 0 is the regularization parameter con-

trolling the trade-off between data fitting and model complexity.
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The training process is independently performed for each anatomically defined ROI in the

Destrieux Atlas [7], which segments the brain into 148 ROIs. After training, we select

a subset of top-performing ROIs based on their correlation scores between the predicted

embeddings T̂roi and the ground truth embeddings T , as determined via cross-validation

on the training data. To combine the predictions from the selected top ROIs, we create an

ensemble model by averaging their predicted embeddings. Specifically, let C ⊆ 0, 1, . . . , 147

be the set of indices of the selected top ROIs. For an unseen fMRI response tensor

Bs ∈ R148×s×v, the ensemble prediction T̂s ∈ Rs×d is computed as:

T̂s =
1

|C|
∑
i∈C

BroiiWroii (4.13)

where Broii ∈ Rs×vroii is the voxel time series for the i-th selected ROI, and Wroii ∈
Rvroii×d is the corresponding learned weight matrix. The ensemble model leverages the

complementary information captured by different brain regions, potentially improving the

overall mapping accuracy and robustness.

The final reconstructed music stimulus K′
s can then be generated via the conditional music

generation model G using the ensemble prediction T̂s as input:

K′
s = G(T̂s) (4.14)

The mapping ensemble model approach takes advantage of the localized nature of brain

function organization by independently modelling the mapping from voxel time series to

prior embeddings for each ROI, and subsequently combining the predictions from the

top-performing ROIs to obtain a more accurate and robust ensemble mapping.
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Experimental Setup

5.1 Dataset

The music fMRI dataset used in this study comes from the music genre neuroimaging

dataset1 by [50]. The dataset contains music stimuli from 10 genres: blues, classical,

country, disco, hip-hop, jazz, metal, pop, reggae, and rock. These stimuli were sampled

randomly from the GTZAN dataset [198]. In total, 54 music pieces of 30 seconds duration

at 22.050kHz sampling rate were selected from each genre, resulting in 540 music pieces.

For each music piece, a 15-second clip was randomly extracted. Each clip was subjected to

2 seconds of fade-in and fade-out effects, and the overall signal intensity was normalized.

The dataset is split into 480 examples for training and 60 examples for testing, with no

repetition in the training set.

Data Collection During the fMRI scanning process, five participants were instructed

to focus on a fixation cross at the center of the screen while listening to the music clips

through MRI-compatible insert earphones (Model S14, Sensimetrics). This headphone

model can attenuate scanner noise and has been widely used in previous MRI studies

with auditory stimuli [199]. Scanning was performed using a 3.0T MRI scanner (TIM

Trio; Siemens, Erlangen, Germany) equipped with a 32-channel head coil. For functional

scanning, 68 interleaved axial slices with a thickness of 2.0mm were scanned without a gap

using a T2*-weighted gradient echo multi-band echo-planar imaging (MB-EPI) sequence

[200]. The scanning parameters were as follows: repetition time (TR) = 1,500ms, echo

1https://openneuro.org/datasets/ds003720/versions/1.0.0
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Figure 5.1: Overview of how Voxel Timeseries are generated in response to music stimuli

time (TE) = 30ms, flip angle (FA) = 62°, field of view (FOV) = 192 × 192 mm², voxel

size = 2 × 2 × 2 mm³, and multi-band factor = 4. A total of 410 volumes were obtained

for each run.

The fMRI data X can be represented as a set of time series

X = {xv|v(0) ∈ [0,W ),v(1) ∈ [0, H),v(2) ∈ [0, D)}. (5.1)

where v = [v(0),v(1),v(2)] represents the 3D spatial coordinates, and xv ∈ RT represents

the fMRI signal time series at the corresponding spatial location with W,H,D, T denoting

the width, height, depth, and length of the time series, respectively. Each subject listened

to 41 music samples in a single run of approximately 10 minutes duration. In total, there

are 18 runs, with 12 runs in the training set and 6 runs in the test set. Each run consists of

410 T2-weighted EPI images (4D), with each image taken at a 1.5-second interval. Thus,

for each 15-second music sample, there are 10 corresponding fMRI scans. Additionally,

for each subject, a T1-weighted anatomical scan (3D) is available.

Text Captions The original dataset by [50] has been augmented with English text

captions2, which describe the musical pieces in terms of genre, instrumentation, rhythm,

and mood. These captions average approximately 46 words or 280 characters in length

and often comprise fragmented or semi-complete sentences, with an average of about 4.5

sentences per caption. The writing style is subjective, reflecting not only the technical

components of the music but also the emotional responses or atmospheres they might

evoke in listeners. The captions were originally written in Japanese and translated using

DeepL.

2https://www.kaggle.com/datasets/nishimotolab/music-caption-brain2music

https://www.kaggle.com/datasets/nishimotolab/music-caption-brain2music
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Figure 5.2: fMRIPrep [12] PreprocessingPipeline

5.2 Data Preprocessing; fMRIPrep

The raw fMRI data were preprocessed using the fMRIPrep software package [12], which

adapts its pipeline based on the available data and metadata (Figure 5.2). The prepro-

cessing workflow for structural MRI begins by constructing an average image from all

available T1-weighted (T1w) images, conforming them to RAS orientation and a common

voxel size. Brain extraction, tissue segmentation, and spatial normalization to standard

spaces are then performed on this averaged T1w reference.

A crucial aspect of the structural MRI preprocessing is surface reconstruction, which is car-

ried out using FreeSurfer [201]. This process involves initializing the subject with T1w and

T2w (if available) structural images, performing basic reconstruction with skull-stripping

skipped, importing the previously calculated brain mask, and resuming reconstruction

while utilizing the T2w image to assist in locating the pial surface. The reconstructed

white and pial surfaces are included in the final report.

For BOLD (T2*-weighted echo-planar imaging, EPI) data preprocessing, the workflow is

divided into fit and transform stages. Initially, a reference image for each BOLD series is
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estimated, either by averaging non-steady-state volumes or taking the median of motion-

corrected volumes. Head-motion estimation is then performed using FSL’s mcflirt [202],

and slice-timing correction is applied if the necessary metadata is available.

A critical step in the BOLD preprocessing pipeline is the EPI to T1w registration, which

aligns the reference EPI image of each run to the reconstructed subject’s gray/white

matter boundary obtained from FreeSurfer’s surfaces. This registration was performed

using FreeSurfer’s bbregister routine which uses the Boundary Based Registration (BBR)

cost function.

Structural and Functional Parcellations To obtain functional parcellations and ex-

tract voxel time-series from specific regions of interest (ROIs), the structural parcellations

derived from FreeSurfer’s Destrieux Atlas [7] are transformed into the coordinate space

of the functional mean reference image for each BOLD run. This transformation is facil-

itated by the previously performed EPI to T1w registration, which aligns the EPI data

to the reconstructed subject’s structural space. By mapping the atlas parcellations onto

the functional EPI images, we can extract the voxel time-series corresponding to each of

the 148 ROIs defined in the Destrieux Atlas. These voxel time-series serve as the basis

for subsequent analyses, allowing us to investigate the relationship between brain activity

and the perceived auditory stimuli.

The table 5.1 provides the number of extracted voxels in each ROI defined in the Destrieux

Atlas, illustrating the extent of the parcellations obtained from the structural MRI data

and subsequently mapped onto the functional EPI images. It can be noticed that ROIs can

vary drastically in their size and also across the different hemispheres. Every individual

has a unique anatomical structure of the brain.

5.3 Implementation Details

The preprocessing of fMRI data was performed using fMRIPrep [12] and FreeSurfer [201].

Due to the computational constraints of running fMRIPrep, which takes approximately

24 hours to process a single subject on a 10th generation Intel Core i7 processor with 32

GB RAM, our analysis and experiments focused on data from subject 1.

For music generation, we utilized MusicGen [11], a simple and controllable model pro-

vided by Meta’s Audiocraft. MusicGen is a single-stage auto-regressive Transformer model
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Table 5.1: Extracted Number of Voxels in each region of interest in Destriuex Atlas

Index Left Hemisphere ROI Voxels Right Hemisphere ROI Voxels
1 lh G temporal middle 907 rh G temporal middle 1204
2 lh G temp sup-Lateral 756 rh G temp sup-Lateral 671
3 lh G temporal inf 1129 rh G temporal inf 835
4 lh S temporal sup 1204 rh S temporal sup 1184
5 lh G pariet inf-Supramar 775 rh G pariet inf-Supramar 813
6 lh G temp sup-Plan tempo 266 rh G temp sup-Plan tempo 217
7 lh S temporal inf 286 rh S temporal inf 250
8 lh G and S subcentral 408 rh G and S subcentral 354
9 lh G pariet inf-Angular 730 rh G pariet inf-Angular 733
10 lh S postcentral 564 rh S postcentral 355
11 lh G postcentral 427 rh G postcentral 391
12 lh S interm prim-Jensen 21 rh S interm prim-Jensen 92
13 lh G occipital middle 736 rh G occipital middle 540
14 lh G precentral 817 rh G precentral 715
15 lh S oc middle and Lunatus 137 rh S oc middle and Lunatus 196
16 lh S central 488 rh S central 422
17 lh G front inf-Opercular 461 rh G front inf-Opercular 408
18 lh G temp sup-Plan polar 229 rh G temp sup-Plan polar 283
19 lh G and S occipital inf 359 rh G and S occipital inf 375
20 lh S oc-temp lat 117 rh S oc-temp lat 209
21 lh Lat Fis-post 219 rh Lat Fis-post 228
22 lh S collat transv ant 253 rh S collat transv ant 194
23 lh S temporal transverse 85 rh S temporal transverse 59
24 lh S precentral-inf-part 322 rh S precentral-inf-part 305
25 lh S occipital ant 180 rh S occipital ant 151
26 lh G temp sup-G T transv 129 rh G temp sup-G T transv 90
27 lh Pole temporal 788 rh Pole temporal 756
28 lh G front middle 1133 rh G front middle 1093
29 lh Lat Fis-ant-Vertical 43 rh Lat Fis-ant-Vertical 54
30 lh G front inf-Triangul 255 rh G front inf-Triangul 339
31 lh S intrapariet and P trans 459 rh S intrapariet and P trans 579
32 lh G oc-temp lat-fusifor 475 rh G oc-temp lat-fusifor 521
33 lh S circular insula inf 341 rh S circular insula inf 236
34 lh S oc sup and transversal 283 rh S oc sup and transversal 181
35 lh S circular insula sup 321 rh S circular insula sup 239
36 lh G parietal sup 664 rh G parietal sup 506
37 lh S front inf 273 rh S front inf 279
38 lh G front inf-Orbital 110 rh G front inf-Orbital 123
39 lh S precentral-sup-part 241 rh S precentral-sup-part 223
40 lh S orbital lateral 29 rh S orbital lateral 92
41 lh G orbital 703 rh G orbital 803
42 lh G Ins lg and S cent ins 190 rh G Ins lg and S cent ins 191
43 lh G insular short 329 rh G insular short 271
44 lh S collat transv post 75 rh S collat transv post 60
45 lh S oc-temp med and Lingual 346 rh S oc-temp med and Lingual 312
46 lh Lat Fis-ant-Horizont 37 rh Lat Fis-ant-Horizont 49
47 lh G oc-temp med-Parahip 424 rh G oc-temp med-Parahip 417
48 lh S front sup 714 rh S front sup 442
49 lh G and S frontomargin 296 rh G and S frontomargin 184
50 lh S calcarine 394 rh S calcarine 382
51 lh G front sup 2506 rh G front sup 1868
52 lh S front middle 248 rh S front middle 482
53 lh Pole occipital 310 rh Pole occipital 560
54 lh G occipital sup 333 rh G occipital sup 382
55 lh S orbital-H Shaped 277 rh S orbital-H Shaped 266
56 lh G oc-temp med-Lingual 521 rh G oc-temp med-Lingual 526
57 lh S circular insula ant 97 rh S circular insula ant 124
58 lh S parieto occipital 388 rh S parieto occipital 391
59 lh G and S transv frontopol 218 rh G and S transv frontopol 344
60 lh G cuneus 364 rh G cuneus 372
61 lh G and S paracentral 365 rh G and S paracentral 307
62 lh G subcallosal 98 rh G subcallosal 88
63 lh S cingul-Marginalis 179 rh S cingul-Marginalis 267
64 lh G precuneus 700 rh G precuneus 650
65 lh G cingul-Post-ventral 94 rh G cingul-Post-ventral 97
66 lh S orbital med-olfact 100 rh S orbital med-olfact 131
67 lh S subparietal 154 rh S subparietal 222
68 lh G and S cingul-Mid-Post 302 rh G and S cingul-Mid-Post 300
69 lh S pericallosal 166 rh S pericallosal 184
70 lh G and S cingul-Mid-Ant 304 rh G and S cingul-Mid-Ant 335
71 lh G and S cingul-Ant 464 rh G and S cingul-Ant 763
72 lh G rectus 265 rh G rectus 295
73 lh S suborbital 141 rh S suborbital 60
74 lh G cingul-Post-dorsal 197 rh G cingul-Post-dorsal 201
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trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. By introduc-

ing a small delay between the codebooks, MusicGen can predict them in parallel, resulting

in only 50 auto-regressive steps per second of audio. The model architecture consists of

an EnCodec model for audio tokenization and an auto-regressive language model based on

the Transformer architecture for music modeling. MusicGen offers different model sizes

(300M, 1.5B, and 3.3B parameters) and two variants: one for text-to-music generation

and another for melody-guided music generation. We specifically used the 1.5 billion pa-

rameter ”melody” checkpoint, as it allows conditioning on chromagrams, unlike the other

checkpoints.

Three modality encoders were employed in our experiments: EnCodec, Chromagram To-

kenizer, and T5 [4]. For a 15-second music sample, EnCodec produces a discrete output

of size [4, 517], where 4 represents the number of codebooks and 517 is the downsampled

sampling rate. The Chromagram Tokenizer yields a discrete output of size [235, 1536],

with 235 being the number of computed chromagrams and 1536 the embedding size of each

chromagram. Additionally, we have text captions for the 15-second music clips, which vary

in length. The output of T5 for a caption is of size n × 1536, where n is the number of

word tokens in the caption, and T5 uses its own tokenizer. Table 5.2 summarizes the

output dimensions of the different prior encoders.

Table 5.2: Output dimensions of different prior encoders.

Encoder Output Dimensions

EnCodec [4, 517]

Chromagram Tokenizer [235, 1536]

T5 (Text Encoder) [n,1536]

To address the temporal alignment problem present in all three encoders, we experimented

with sliding window averaging, skipping timesteps, and total averaging techniques.

For learning the mapping between cortical voxel time series and prior embeddings com-

puted by the encoders, we employed L2 Regularized Linear Regression using the Himalaya

library [203]. A separate model was fit independently for each region of interest (ROI).

The top 6 ROIs were then selected based on their correlation scores after 5-fold cross-

validation on training data, forming an ensemble model whose outputs are averaged to

produce a single prior embedding for conditioning the MusicGen model, depending on the

type of prior.
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All experiments were conducted using Google Colab with a T4 GPU, leveraging open-

source datasets and tools. We express our gratitude to the open-source community for

making this research possible.

Hyperparameter Tuning We use a ridge regression to estimate our model parameters.

Citing the himalaya documentation3: Let X ∈ Rn×p be a feature matrix with n samples

and p features, y ∈ Rn a target vector, and α > 0 a fixed regularization hyperparameter.

Ridge regression [204] defines the weight vector b∗ ∈ Rp as:

b∗ = argminb∥Xb− y∥22 + α∥b∥22 . (5.2)

The equation has a closed-form solution b∗ = My, where M = (X⊤X + αIp)
−1X⊤ ∈

Rp×n.

To determine α we run 5-fold cross-validation on the training data. Note that there is one

α parameter per regression targets i.e. it can be 4 in the case of EnCodec or 1536 in the

case of Chromagram and T5. We inspect the performance on training and evaluation data

around the chosen α vector “α (opt)” in Figure 5.3.

Figure 5.3: Performance of the regressor when trained with α values in the neighborhood
of the α that was determined to be optimal on the training split via cross-validation. The
model starts to overfit with lower values of α (to the left) and underfits in the opposite

direction.

3gallantlab.org/himalaya/models.html#ridge

https://gallantlab.org/himalaya/models.html#ridge
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5.4 Evaluation Metrics

5.4.1 Prior Embedding Evaluation

To assess the performance of the linear regression model in predicting prior embeddings,

we employ several evaluation metrics: Mean Absolute Error (MAE), Mean Squared Error

(MSE), R-squared (R2), and Identification Accuracy.

Mean Absolute Error (MAE). MAE measures the average magnitude of the errors

in a set of predictions, without considering their direction. It is the average over the test

sample of the absolute differences between prediction and actual observation where all

individual differences have equal weight. Given a vector of predictions ŷ and a vector of

true values y, each containing n samples, the MAE is defined as:

MAE =
1

n

n∑
i=1

|ŷi − yi| (5.3)

MAE values range from 0 to ∞, with 0 indicating a perfect fit. Lower values are better.

Mean Squared Error (MSE). MSE measures the average of the squares of the errors,

that is, the average squared difference between the estimated values and the actual value.

Given a vector of predictions ŷ and a vector of true values y, each containing n samples,

the MSE is defined as:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (5.4)

MSE values range from 0 to ∞, with 0 indicating a perfect fit. Lower values are better.

R-squared (R2). R2 is the proportion of the variance in the dependent variable

that is predictable from the independent variable(s). It provides a measure of how well

observed outcomes are replicated by the model, based on the proportion of total variation

of outcomes explained by the model. Given a vector of predictions ŷ and a vector of true

values y, each containing n samples, and ȳ being the mean of the true values, the R2 is

defined as:

R2 = 1−
∑n

i=1(ŷi− yi)
2∑

i = 1n(yi − ȳ)2
(5.5)

R2 values range from 0 to 1, with 1 indicating a perfect fit. Higher values are better.
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Identification Accuracy. Following the decoding literature [44, 49], we compute an

identification accuracy of the predicted d-dimensional embeddings with respect to their

target embeddings. Assume there is a matrix of predicted embeddings P ∈ Rn×d and a

matrix (of equal size) containing target embeddings T . Let C ∈ Rn×n be computed from

P and T , specifically Ci,j is Pearson correlation coefficient between i-th row of P and

j-th row of T . The identification accuracy for the i-th prediction is defined as:

id acci =
1

n− 1

n∑
j=1

1 [Ci,i > Ci,j ] (5.6)

The identification accuracy for all examples is simply the average:

id acc =
1

n

n∑
i=1

id acci (5.7)

The identification accuracy, ranging from 0 to 1 with 0.5 indicating performance equivalent

to random chance, provides a quantified measure of how well an embedding was predicted

in relation to other embeddings in the dataset. Higher values are better.

5.4.2 Music Generation Evaluation

To evaluate the quality of the generated music samples, we compare them with the ground-

truth samples using three measures: Fréchet Audio Distance (FAD), Kullback-Leibler Di-

vergence (KL), and Mel Cepstral Distortion (MCD), following the evaluation methodology

of MusicGen [11].

Fréchet Audio Distance (FAD). FAD [205] is a measure of similarity between two

distributions of audio features. It is an adaptation of the Fréchet Inception Distance (FID)

[206], which is commonly used to evaluate the quality of generated images. FAD uses the

VGGish [207] model, a variant of the VGG model [208] trained on audio data, to extract

features from the audio samples. The VGGish model maps the audio samples into a high-

dimensional feature space. The FAD is then computed as the Fréchet distance between

two multivariate Gaussians fitted to the feature distributions of the real and generated

audio samples:

FAD = ∥µr − µg∥22 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)

(5.8)

where µr and µg are the means, and Σr and Σg are the covariance matrices of the real

and generated feature distributions, respectively. Tr denotes the trace of a matrix. A low
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FAD score indicates that the generated audio is similar to the real audio in terms of the

VGGish features, suggesting that the generated audio is plausible. FAD values range from

0 to ∞, with 0 indicating that the generated audio is indistinguishable from the ground

truth. Lower values are better.

Kullback-Leibler Divergence (KL). KL divergence [209] is a measure of how one

probability distribution differs from another. In the context of evaluating generated music,

we use a pre-trained audio classifier to predict the probabilities of different AudioSet [210]

labels for the real and generated audio samples. AudioSet is a large-scale dataset of audio

events, and the pre-trained classifier is trained to predict the presence of these events

in an audio sample. The KL divergence is then computed between the predicted label

distributions of the real and generated audio samples:

KL(P ∥ Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(5.9)

where P and Q are the predicted label distributions for the real and generated audio sam-

ples, respectively, and i ranges over all the AudioSet labels. The KL divergence measures

how much information is lost when the label distribution of the generated audio is used to

approximate the label distribution of the real audio. A low KL divergence indicates that

the generated audio shares similar high-level concepts with the real audio. KL divergence

values range from 0 to ∞, with 0 indicating that the generated audio has the same label

distribution as the ground truth. Lower values are better.

Mel Cepstral Distortion (MCD). MCD [211] is a measure of the difference between

two sequences of mel-frequency cepstral coefficients (MFCCs). MFCCs are a compact

representation of the short-term power spectrum of an audio signal, based on a linear

cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The

mel scale is a perceptual scale of pitches judged by listeners to be equal in distance from

one another. MFCCs are commonly used as features in speech recognition and synthesis

systems, as they provide a good approximation of the human auditory system’s response.

The MCD is computed as the Euclidean distance between the MFCC sequences of the real

and generated audio samples:

MCD =
1

T

T∑
t=1

√√√√ D∑
d=1

(ĉt, d− ct, d)2 (5.10)
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where ĉ and c are the MFCC sequences of the generated and real audio samples, respec-

tively, T is the number of frames, and D is the number of MFCC dimensions. A low

MCD value indicates that the generated audio is similar to the real audio in terms of

the mel-cepstral features, suggesting that the generated audio has a similar timbre and

spectral content as the real audio. MCD values range from 0 to ∞, with 0 indicating that

the generated audio is identical to the ground truth. Lower values are better. In practice,

an MCD value below 4 is considered to be of good quality.
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Results and Discussion

In this chapter, we present the results of our experiments on predicting prior embeddings

from fMRI data and reconstructing music from these predicted embeddings. We evalu-

ate the performance of three temporal alignment techniques (sliding window averaging,

skipped timesteps, and total averaging) in combination with three modality encoders (En-

Codec, Chromagram Tokenizer, and T5) for both tasks. The results are compared using

various evaluation metrics, including Mean Absolute Error (MAE), Mean Squared Error

(MSE), R-squared (R2), and Identification Accuracy for prior embedding prediction, and

Fréchet Audio Distance (FAD), Kullback-Leibler Divergence (KL), and Mel Cepstral Dis-

tortion (MCD) for music reconstruction. We also discuss the scientific insights gained from

analyzing the top-performing regions of interest (ROIs) in the brain for this task.

6.1 Prior Embedding Prediction Results

Table 6.1 presents the results of prior embedding prediction using different temporal align-

ment techniques and modality encoders. The results show that the total averaging tech-

nique consistently outperforms the other two techniques across all modality encoders, with

the T5 encoder achieving the best overall performance.

The superior performance of the total averaging technique can be attributed to its ability to

capture the overall characteristics of the music sample and the corresponding brain activity,

while the other two techniques may lose important information due to downsampling or

skipping. The T5 encoder’s better performance compared to the other encoders suggests

67
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Table 6.1: Prior embedding prediction results using different temporal alignment tech-
niques and modality encoders. Best results for each encoder are in bold.

Method MAE ↓ MSE ↓ R2 ↑ Id. Acc. ↑
EnCodec

Sliding Window Averaging 0.912 1.254 0.213 0.532

Skipped Timesteps 0.895 1.197 0.236 0.541

Total Averaging 0.874 1.132 0.258 0.559

Chromagram Tokenizer

Sliding Window Averaging 0.932 1.301 0.192 0.521

Skipped Timesteps 0.917 1.243 0.219 0.529

Total Averaging 0.887 1.178 0.247 0.548

T5 (Text Encoder)

Sliding Window Averaging 0.832 1.065 0.295 0.574

Skipped Timesteps 0.819 1.011 0.316 0.583

Total Averaging 0.791 0.948 0.342 0.602

that the textual descriptions of the music samples provide more discriminative features

for predicting the prior embeddings from fMRI data.

These results demonstrate the effectiveness of using a combination of total averaging and

the T5 encoder for predicting prior embeddings from fMRI data. However, the overall

performance metrics indicate that there is still room for improvement in this task, as the

best R2 score is only 0.342, and the highest identification accuracy is 0.602, which is only

slightly better than random chance (0.5). This suggests that predicting prior embeddings

from fMRI data is a challenging task that requires further research and development of

more sophisticated methods.

6.2 Music Generation Results

Table 6.2 presents the results of music generation using the predicted prior embeddings

from different temporal alignment techniques and modality encoders. The generated music

samples are compared with the ground truth music using three evaluation metrics: Fréchet

Audio Distance (FAD), Kullback-Leibler Divergence (KL), and Mel Cepstral Distortion

(MCD).

The results show that the music generated using the predicted prior embeddings from

the EnCodec and Chromagram Tokenizer encoders is of poor quality, as indicated by the

high values of FAD, KL, and MCD. This suggests that the predicted embeddings from
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Table 6.2: Music generation results using different temporal alignment techniques and
modality encoders. Best results for each encoder are in bold.

Method FAD ↓ KL ↓ MCD ↓
EnCodec

Sliding Window Averaging 23.76 4.32 8.65

Skipped Timesteps 22.14 4.11 8.27

Total Averaging 20.89 3.95 7.98

Chromagram Tokenizer

Sliding Window Averaging 25.43 4.56 9.12

Skipped Timesteps 24.09 4.37 8.83

Total Averaging 22.61 4.18 8.51

T5 (Text Encoder)

Sliding Window Averaging 12.35 2.74 5.39

Skipped Timesteps 11.48 2.59 5.12

Total Averaging 8.41 2.42 4.87

these encoders do not capture the essential characteristics of the music samples, leading

to incoherent and low-quality generated music.

On the other hand, the music generated using the predicted prior embeddings from the

T5 (text) encoder shows significantly better results, with lower values of FAD, KL, and

MCD compared to the other encoders. This is consistent with the findings from the prior

embedding prediction task, where the T5 encoder achieved the best performance. Among

the different temporal alignment techniques, total averaging yields the best results for the

T5 encoder, with an impressive FAD of 8.41, a KL of 2.42, and an MCD of 4.87.

The FAD score of 8.41 for the T5 encoder with total averaging indicates that the generated

music has a relatively close distribution of audio features compared to the real music. This

suggests that the text-based prior embeddings capture important characteristics of the

music samples, enabling the generation of more coherent and realistic music. However,

the KL and MCD values still indicate some differences between the generated and ground

truth music, implying that there is room for further improvement.

These results highlight the importance of selecting an appropriate modality encoder for

generating music from fMRI data. The text-based T5 encoder, combined with the total

averaging technique, demonstrates the most promising results among the evaluated meth-

ods. This finding suggests that textual descriptions of music samples provide valuable

information for reconstructing music from brain activity.

Nevertheless, the overall quality of the generated music still falls short of the ground truth,

as evidenced by the non-zero values of the evaluation metrics. Further research is needed
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to develop more advanced methods for predicting prior embeddings and generating music

that more closely resembles the original music samples. Additionally, exploring other

modality encoders or combining multiple encoders may lead to further improvements in

the quality of the generated music.

6.3 Top-Performing Regions of Interest (ROIs)

In this section, we discuss the top-performing regions of interest (ROIs) identified in our

experiments for predicting prior embeddings from fMRI data. Table 6.3 lists the six ROIs

that consistently showed the highest correlation scores between the predicted embeddings

and the ground truth embeddings across different modality encoders and temporal align-

ment techniques.

Table 6.3: Top-performing regions of interest (ROIs) for predicting prior embeddings
from fMRI data.

Rank ROI Name Basic Functions

1 lh G temp sup-Lateral Auditory processing, language processing, and multimodal integration

2 lh S circular insula inf Auditory-motor integration, temporal processing, and emotional processing

3 lh G temporal inf Visual object recognition, semantic processing, and multimodal integration

4 lh S temporal inf Auditory-visual integration, language processing, and social cognition

5 lh G temporal middle Auditory processing, language processing, and semantic memory

6 lh G oc-temp med-Parahip Episodic memory, spatial navigation, and emotional processing

The identified ROIs are primarily located in the temporal lobe of the left hemisphere,

which is known to play a crucial role in auditory processing, language comprehension, and

multimodal integration [212, 213]. The superior temporal gyrus (lh G temp sup-Lateral),

which ranks first among the top ROIs, is a key region for auditory processing and is

involved in the perception and analysis of complex sounds, including music and speech

[214, 155]. The middle temporal gyrus (lh G temporal middle) and the inferior temporal

gyrus (lh G temporal inf) are also implicated in auditory processing, as well as semantic

processing and multimodal integration [215, 216].

The inferior segment of the circular sulcus of the insula (lh S circular insula inf) and the

inferior temporal sulcus (lh S temporal inf) are notable for their roles in auditory-motor

integration, temporal processing, and auditory-visual integration [217, 218]. These regions

are likely involved in the temporal aspects of music perception and the integration of

musical features across different sensory modalities.

Interestingly, the parahippocampal gyrus (lh G oc-temp med-Parahip) also emerges as a

top-performing ROI, despite being primarily associated with episodic memory and spatial
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navigation [219]. However, recent studies have shown that the parahippocampal gyrus is

also involved in the emotional processing of music [220, 221], suggesting that emotional

aspects of music may play a role in the reconstruction of music from brain activity.

The prominence of these ROIs in predicting prior embeddings from fMRI data provides

valuable insights into the neural mechanisms underlying music perception and generation.

Our findings suggest that the temporal lobe, particularly the auditory cortex and its

associated regions, contains rich information about the musical features and characteristics

that can be used to reconstruct music from brain activity. The involvement of regions

implicated in multimodal integration and emotional processing highlights the complex

and multifaceted nature of music perception and its representation in the brain.

Furthermore, the success of the text-based T5 encoder in generating more coherent and

realistic music from predicted prior embeddings suggests that language-related regions,

such as the superior and middle temporal gyri, may play a key role in bridging the gap

between brain activity and music generation. The semantic and linguistic information

captured by the T5 encoder may align well with the neural representations of music in

these regions, facilitating the reconstruction of music from brain activity.

These insights can guide future research in the field of music generation from brain scans,

focusing on the identified ROIs and their functional roles in music perception and process-

ing. Further investigations into the specific contributions of each ROI and their interac-

tions may lead to the development of more advanced and biologically plausible models for

generating music from brain activity. Additionally, exploring the potential of combining

information from multiple ROIs and modality encoders may unlock new possibilities for

enhancing the quality and diversity of generated music.

In conclusion, our analysis of the top-performing ROIs in predicting prior embeddings

from fMRI data sheds light on the neural foundations of music perception and generation,

highlighting the importance of auditory, language, and multimodal integration regions in

the temporal lobe. These findings contribute to our understanding of the complex interplay

between brain activity and musical experience, paving the way for further advancements

in the field of music generation from brain scans.
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Future work

The field of music generation from brain scans is a rapidly evolving area with numer-

ous potential avenues for future research. In this chapter, we outline several promising

directions that could extend and enhance the work presented in this thesis.

7.1 Extending Analysis to Multiple Subjects

One of the primary limitations of our current study is the focus on a single subject due

to computational constraints. To generalize our findings and ensure the robustness of

the proposed methodology, it is essential to extend the analysis to a larger cohort of

subjects. By incorporating data from multiple individuals, we can account for inter-subject

variability in brain activity patterns and musical preferences [222, 223]. This extension

would allow us to investigate the consistency of the identified top-performing ROIs across

subjects and potentially uncover additional regions that contribute to music generation

from brain scans.

7.2 Incorporating CLAP Encoder in MusicGen

Our current experiments utilize the EnCodec, Chromagram Tokenizer, and T5 encoders for

generating prior embeddings. However, recent advancements in contrastive language-audio

pretraining (CLAP) have shown promising results in capturing the semantic relationships

between text and audio [224]. Integrating the CLAP encoder into the MusicGen model

could potentially enhance the quality and coherence of the generated music by leveraging
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the learned associations between textual descriptions and audio features. This integration

may also facilitate the generation of music that better aligns with the semantic content of

the brain activity, as captured by the text-based prior embeddings.

7.3 Exploring Diffusion Models for Music Generation

Diffusion models have emerged as a powerful framework for generating high-quality images

[225, 226] and have recently been adapted for audio generation tasks [227, 228]. These

models learn to generate data by reversing a gradual noising process, allowing for the

creation of diverse and realistic samples. Exploring the application of diffusion models to

music generation from brain scans could potentially yield more naturalistic and expressive

musical outputs. By conditioning the diffusion process on the predicted prior embeddings

from brain activity, we can guide the generation of music that captures the underlying

neural representations of the listening experience.

7.4 Incorporating Temporal Dynamics in Music Generation

Our current approach focuses on generating music based on static prior embeddings de-

rived from fMRI data. However, music is inherently a temporal art form, and the dynamics

of brain activity during music listening may contain valuable information for music gen-

eration. Incorporating techniques such as recurrent neural networks (RNNs) [229, 230] or

transformer-based models [231, 232] could enable the modeling of temporal dependencies

in brain activity and music generation. By capturing the evolving patterns of neural re-

sponses over time, we can potentially generate music with more complex structures and

temporal variations that better reflect the listening experience.

7.5 Investigating Cross-Modal Transfer Learning

Transfer learning has been successfully applied in various domains to leverage knowledge

gained from one task or modality to improve performance in another [233, 234]. In the

context of music generation from brain scans, exploring cross-modal transfer learning could

provide valuable insights and enhance the quality of generated music. For example, we

could investigate the transfer of learned representations from visual or linguistic tasks

to the music generation task, as there may be shared neural mechanisms underlying the
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processing of different sensory modalities [235, 236]. By leveraging knowledge from related

domains, we can potentially improve the efficiency and effectiveness of music generation

from brain scans.

7.6 Conducting Perceptual Evaluations

While objective evaluation metrics such as FAD, KL divergence, and MCD provide quanti-

tative measures of the generated music’s quality, it is crucial to also consider the subjective

perceptual experiences of listeners. Conducting perceptual evaluations, such as listening

tests or user studies, can offer valuable insights into the perceived quality, expressiveness,

and emotional impact of the generated music [237, 238]. By gathering feedback from a

diverse group of listeners, we can identify strengths and weaknesses of the generated music

and guide future improvements in the music generation pipeline.

7.7 Exploring Brain-Computer Interfaces for Music Gener-

ation

The ultimate goal of music generation from brain scans is to create a seamless and intu-

itive interface between the human mind and musical creativity. Brain-computer interfaces

(BCIs) have shown promise in enabling direct communication between the brain and ex-

ternal devices [239, 240]. Integrating our music generation framework with BCI technology

could open up new possibilities for real-time, thought-controlled music composition and

performance. By developing robust and reliable BCI systems that can accurately decode

brain activity and translate it into musical parameters, we can empower individuals to cre-

ate music using only their thoughts, revolutionizing the way we interact with and express

ourselves through music.

In conclusion, the future of music generation from brain scans holds immense potential

for both scientific understanding and creative applications. By extending our analysis

to multiple subjects, incorporating advanced encoders and generative models, exploring

temporal dynamics and cross-modal transfer learning, conducting perceptual evaluations,

and integrating with brain-computer interfaces, we can push the boundaries of this exciting

field. Through interdisciplinary collaborations and continuous innovation, we can unlock

new possibilities for understanding the neural basis of musical creativity and enabling

individuals to express themselves through the power of thought and sound.



Chapter 8

Conclusion

In this work, we have explored the fascinating intersection of neuroscience, artificial intel-

ligence, and music generation. Our primary objective was to investigate the feasibility of

reconstructing music from brain activity recorded through functional magnetic resonance

imaging (fMRI) scans. By leveraging advanced machine learning techniques and state-of-

the-art music generation models, we have developed a novel framework that bridges the

gap between neural responses to music and the creative process of music composition.

Our research journey began with a comprehensive literature review, where we delved into

the existing body of knowledge on the neural correlates of music perception, the principles

of brain decoding, and the latest advancements in music generation algorithms. This

extensive exploration laid the foundation for our innovative approach to music generation

from brain scans.

The core of our methodology revolved around the Map method, a technique that learns a

mapping between the fMRI response tensor and the prior embedding space of a conditional

music generation model. We experimented with various modality encoders, including

EnCodec for audio waveforms, Chromagram Tokenizer for melodic representations, and

T5 for textual descriptions of music. Additionally, we tackled the temporal alignment

problem by investigating different techniques such as sliding window averaging, skipped

timesteps, and total averaging.

Our experiments yielded promising results, demonstrating the potential of generating mu-

sic from brain activity. The T5 encoder, which leverages textual descriptions of music,

emerged as the most effective modality for capturing the semantic and emotional aspects

of music perception in the brain. The total averaging technique for temporal alignment
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also proved to be the most successful in aligning the fMRI response tensor with the prior

embedding space.

Furthermore, our analysis of the top-performing regions of interest (ROIs) in the brain

provided valuable insights into the neural mechanisms underlying music perception and

generation. The identified ROIs, primarily located in the temporal lobe and associated

with auditory processing, language comprehension, and multimodal integration, highlight

the complex interplay between different brain regions in the experience of music.

The evaluation of the generated music samples using objective metrics such as Fréchet

Audio Distance (FAD), Kullback-Leibler Divergence (KL), and Mel Cepstral Distortion

(MCD) revealed the challenges and limitations of our current approach. While the T5

encoder with total averaging achieved the best performance among the evaluated methods,

there is still room for improvement in terms of the quality and fidelity of the generated

music compared to the ground truth.

Despite these challenges, our work has laid the groundwork for further advancements in

the field of music generation from brain scans. The proposed framework and the insights

gained from our experiments open up numerous avenues for future research. Extending

the analysis to multiple subjects, incorporating advanced encoders and generative models,

exploring temporal dynamics and cross-modal transfer learning, conducting perceptual

evaluations, and integrating with brain-computer interfaces are just a few of the exciting

directions that can be pursued to push the boundaries of this interdisciplinary field.

The implications of our research extend beyond the realm of music generation. By unrav-

elling the neural codes of music perception and translating them into creative expressions,

we contribute to a deeper understanding of the human brain and its relationship with

the arts. Our work has the potential to inspire new forms of musical creation, enable

individuals with limited motor abilities to compose music using their thoughts, and foster

collaborations between neuroscientists, musicians, and AI researchers.

In conclusion, this thesis represents a significant step forward in the quest to generate music

from brain scans. Through our innovative methodology, comprehensive experiments, and

insightful analysis, we have demonstrated the feasibility and potential of this exciting

research direction. As we continue to unravel the mysteries of the brain and harness the

power of artificial intelligence, we move closer to a future where the boundaries between

the mind, music, and machine dissolve, giving rise to new forms of creative expression and

artistic exploration.
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[70] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity neural audio com-

pression,” arXiv preprint arXiv:2210.13438, 2022.

[71] R. Sheffer and Y. Adi, “I hear your true colors: Image guided audio generation,” in

ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 1–5, IEEE, 2023.

[72] R. Huang, J. Huang, D. Yang, Y. Ren, L. Liu, M. Li, Z. Ye, J. Liu, X. Yin, and

Z. Zhao, “Make-an-audio: Text-to-audio generation with prompt-enhanced diffusion

models,” arXiv preprint arXiv:2301.12661, 2023.

[73] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang, and M. D. Plumbley,

“Audioldm: Text-to-audio generation with latent diffusion models,” arXiv preprint

arXiv:2301.12503, 2023.



Bibliography 84

[74] F. Tong, “Primary visual cortex and visual awareness,” Nature Reviews Neuro-

science, vol. 4, no. 3, pp. 219–229, 2003.

[75] K. Grill-Spector and R. Malach, “The human visual cortex,” Annu. Rev. Neurosci.,

vol. 27, pp. 649–677, 2004.

[76] E. J. Allen, G. St-Yves, Y. Wu, J. L. Breedlove, J. S. Prince, L. T. Dowdle, M. Nau,

B. Caron, F. Pestilli, I. Charest, et al., “A massive 7t fmri dataset to bridge cognitive

neuroscience and artificial intelligence,” Nature neuroscience, vol. 25, no. 1, pp. 116–

126, 2022.

[77] T. Horikawa and Y. Kamitani, “Generic decoding of seen and imagined objects using

hierarchical visual features,” Nature communications, vol. 8, no. 1, p. 15037, 2017.

[78] G. Shen, T. Horikawa, K. Majima, and Y. Kamitani, “Deep image reconstruction

from human brain activity,” PLoS computational biology, vol. 15, no. 1, p. e1006633,

2019.

[79] Y. Takagi and S. Nishimoto, “High-resolution image reconstruction with latent diffu-

sion models from human brain activity,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 14453–14463, 2023.

[80] F. Ozcelik and R. VanRullen, “Natural scene reconstruction from fmri signals using

generative latent diffusion,” Scientific Reports, vol. 13, no. 1, p. 15666, 2023.

[81] T. Fang, Y. Qi, and G. Pan, “Reconstructing perceptive images from brain activ-

ity by shape-semantic gan,” Advances in Neural Information Processing Systems,

vol. 33, pp. 13038–13048, 2020.

[82] Z. Ren, J. Li, X. Xue, X. Li, F. Yang, Z. Jiao, and X. Gao, “Reconstructing seen

image from brain activity by visually-guided cognitive representation and adversarial

learning,” NeuroImage, vol. 228, p. 117602, 2021.

[83] R. Beliy, G. Gaziv, A. Hoogi, F. Strappini, T. Golan, and M. Irani, “From voxels

to pixels and back: Self-supervision in natural-image reconstruction from fmri,”

Advances in Neural Information Processing Systems, vol. 32, 2019.

[84] G. Gaziv, R. Beliy, N. Granot, A. Hoogi, F. Strappini, T. Golan, and M. Irani,

“Self-supervised natural image reconstruction and large-scale semantic classification

from brain activity,” NeuroImage, vol. 254, p. 119121, 2022.



Bibliography 85

[85] C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, N. Souly, and M. Shah, “Deep

learning human mind for automated visual classification,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 6809–6817, 2017.

[86] Y. Bai, X. Wang, Y. Cao, Y. Ge, C. Yuan, and Y. Shan, “Dreamdiffusion: Generating

high-quality images from brain eeg signals,” arXiv preprint arXiv:2306.16934, 2023.

[87] Y.-T. Lan, K. Ren, Y. Wang, W.-L. Zheng, D. Li, B.-L. Lu, and L. Qiu, “Seeing

through the brain: Image reconstruction of visual perception from human brain

signals,” arXiv preprint arXiv:2308.02510, 2023.

[88] J.-Y. Park, M. Tsukamoto, M. Tanaka, and Y. Kamitani, “Sound reconstruction

from human brain activity via a generative model with brain-like auditory features,”

arXiv preprint arXiv:2306.11629, 2023.

[89] S. A. Nastase, Y.-F. Liu, H. Hillman, A. Zadbood, L. Hasenfratz, N. Keshavarzian,

J. Chen, C. J. Honey, Y. Yeshurun, M. Regev, et al., “The “narratives” fmri dataset

for evaluating models of naturalistic language comprehension,” Scientific data, vol. 8,

no. 1, p. 250, 2021.

[90] N. Xi, S. Zhao, H. Wang, C. Liu, B. Qin, and T. Liu, “Unicorn: Unified cognitive

signal reconstruction bridging cognitive signals and human language,” arXiv preprint

arXiv:2307.05355, 2023.

[91] Y. Guo, T. Liu, X. Zhang, A. Wang, and W. Wang, “End-to-end translation of

human neural activity to speech with a dual–dual generative adversarial network,”

Knowledge-Based Systems, vol. 277, p. 110837, 2023.

[92] J. Tang, A. LeBel, S. Jain, and A. G. Huth, “Semantic reconstruction of continuous

language from non-invasive brain recordings,” Nature Neuroscience, pp. 1–9, 2023.

[93] T. Nakai, N. Koide-Majima, and S. Nishimoto, “Music genre neuroimaging dataset,”

Data in Brief, vol. 40, p. 107675, 2022.

[94] I. Daly, N. Nicolaou, D. Williams, F. Hwang, A. Kirke, E. Miranda, and S. J. Na-

suto, “Neural and physiological data from participants listening to affective music,”

Scientific Data, vol. 7, no. 1, p. 177, 2020.

[95] T. I. Denk, Y. Takagi, T. Matsuyama, A. Agostinelli, T. Nakai, C. Frank, and

S. Nishimoto, “Brain2music: Reconstructing music from human brain activity,”

arXiv preprint arXiv:2307.11078, 2023.



Bibliography 86

[96] I. Daly, “Neural decoding of music from the eeg,” Scientific Reports, vol. 13, no. 1,

p. 624, 2023.

[97] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE,

vol. 37, no. 1, pp. 10–21, 1949.

[98] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-

brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw

audio,” arXiv preprint arXiv:1609.03499, 2016.

[99] A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. Driess-

che, E. Lockhart, L. Cobo, F. Stimberg, et al., “Parallel wavenet: Fast high-fidelity

speech synthesis,” in International conference on machine learning, pp. 3918–3926,

PMLR, 2018.
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